948 resultados para life-cycle management
Resumo:
This thesis focuses on integration in project business, i.e. how projectbased companies organize their product and process structures when they deliver industrial solutions to their customers. The customers that invest in these solutions run their businesses in different geographical, political and economical environments, which should be acknowledged by the supplier when providing solutions comprising of larger and more complex scopes than previously supplied to these customers. This means that the suppliers are increasing their supply range by taking over some of the activities in the value chain that have traditionally been handled by the customer. In order to be able to provide the functioning solutions, including more engineering hours, technical equipment and a wider project network, a change is needed in the mindset in order to be able to carry out and take the required responsibility that these new approaches bring. For the supplier it is important to be able to integrate technical products, systems and services, but the supplier also needs to have the capabilities to integrate the cross-functional organizations and departments in the project network, the knowledge and information between and within these organizations and departments, along with inputs from the customer into the product and process structures during the lifecycle of the project under development. Hence, the main objective of this thesis is to explore the challenges of integration that industrial projects meet, and based on that, to suggest a concept of how to manage integration in project business by making use of integration mechanisms. Integration is considered the essential process for accomplishing an industrial project, whereas the accomplishment of the industrial project is considered to be the result of the integration. The thesis consists of an extended summary and four papers, that are based on three studies in which integration mechanisms for value creation in industrial project networks and the management of integration in project business have been explored. The research is based on an inductive approach where in particular the design, commissioning and operations functions of industrial projects have been studied, addressing entire project life-cycles. The studies have been conducted in the shipbuilding and power generation industries where the scopes of supply consist of stand-alone equipment, equipment and engineering, and turnkey solutions. These industrial solutions include demanding efforts in engineering and organization. Addressing the calls for more studies on the evolving value chains of integrated solutions, mechanisms for inter- and intra-organizational integration and subsequent value creation in project networks have been explored. The research results in thirteen integration mechanisms and a typology for integration is proposed. Managing integration consists of integrating the project network (the supplier and the sub-suppliers) and the customer (the customer’s business purpose, operations environment and the end-user) into the project by making use of integration mechanisms. The findings bring new insight into research on industrial project business by proposing integration of technology and engineering related elements with elements related to customer oriented business performance in contemporary project environments. Thirteen mechanisms for combining products and the processes needed to deliver projects are described and categorized according to the impact that they have on the management of knowledge and information. These mechanisms directly relate to the performance of the supplier, and consequently to the functioning of the solution that the project provides. This thesis offers ways to promote integration of knowledge and information during the lifecycle of industrial projects, enhancing the development towards innovative solutions in project business.
Resumo:
Yritysten liiketoimintamallit ovat jatkuvan kehityksen kohteena. Viimeisinä vuosina valmistavien yhtiöiden kiinnostus huolehtia asiakkaistaan koko tuotteen elinkaaren aikana ja tarjota erilaisia palveluita asiakkailleen on kasvanut. Tämän palvelujen laajentumisen myötä myös vaateet yrityksen omaa toimittajakenttää kohtaan ovat muuttuneet. Yritykset eivät kykene tuottamaan kaikkia tuotteistamiaan palveluja itse, jolloin yrityksen toimittajakenttä ja sen kyvykkyydet tuottaa tarvittavia palveluita ovat avainasemassa yrityksen menestystekijänä. Tämän työn teoriaosuudessa on esitelty toimittajakentän hallinnan perusteorioita. Kirjallisuus osuuden lisäksi työssä on hyödynnetty toimintatutkimusta kohdeyrityksessä. Tässä diplomityössä on tutkittu mahdollisia keinoja kehittää organisaation omaa toimintaa ja sekä yrityksen toimittajakenttää niin, että se tukee liiketoimintamallin kehitystä koneenrakennusyrityksestä kohti elinkaariliiketoimintaa. Työssä esitetyt keinot voidaan ottaa käyttöön, joko yksitellen tai kokonaisuutena.
Resumo:
This paper examines the life cycle GHG emissions from existing UK pulverized coal power plants. The life cycle of the electricity Generation plant includes construction, operation and decommissioning. The operation phase is extended to upstream and downstream processes. Upstream processes include the mining and transport of coal including methane leakage and the production and transport of limestone and ammonia, which are necessary for flue gas clean up. Downstream processes, on the other hand, include waste disposal and the recovery of land used for surface mining. The methodology used is material based process analysis that allows calculation of the total emissions for each process involved. A simple model for predicting the energy and material requirements of the power plant is developed. Preliminary calculations reveal that for a typical UK coal fired plant, the life cycle emissions amount to 990 g CO2-e/kWh of electricity generated, which compares well with previous UK studies. The majority of these emissions result from direct fuel combustion (882 g/kWh 89%) with methane leakage from mining operations accounting for 60% of indirect emissions. In total, mining operations (including methane leakage) account for 67.4% of indirect emissions, while limestone and other material production and transport account for 31.5%. The methodology developed is also applied to a typical IGCC power plant. It is found that IGCC life cycle emissions are 15% less than those from PC power plants. Furthermore, upon investigating the influence of power plant parameters on life cycle emissions, it is determined that, while the effect of changing the load factor is negligible, increasing efficiency from 35% to 38% can reduce emissions by 7.6%. The current study is funded by the UK National Environment Research Council (NERC) and is undertaken as part of the UK Carbon Capture and Storage Consortium (UKCCSC). Future work will investigate the life cycle emissions from other power generation technologies with and without carbon capture and storage. The current paper reveals that it might be possible that, when CCS is employed. the emissions during generation decrease to a level where the emissions from upstream processes (i.e. coal production and transport) become dominant, and so, the life cycle efficiency of the CCS system can be significantly reduced. The location of coal, coal composition and mining method are important in determining the overall impacts. In addition to studying the net emissions from CCS systems, future work will also investigate the feasibility and technoeconomics of these systems as a means of carbon abatement.
Resumo:
Purpose – The purpose of this research is to show that reliability analysis and its implementation will lead to an improved whole life performance of the building systems, and hence their life cycle costs (LCC). Design/methodology/approach – This paper analyses reliability impacts on the whole life cycle of building systems, and reviews the up-to-date approaches adopted in UK construction, based on questionnaires designed to investigate the use of reliability within the industry. Findings – Approaches to reliability design and maintainability design have been introduced from the operating environment level, system structural level and component level, and a scheduled maintenance logic tree is modified based on the model developed by Pride. Different stages of the whole life cycle of building services systems, reliability-associated factors should be considered to ensure the system's whole life performance. It is suggested that data analysis should be applied in reliability design, maintainability design, and maintenance policy development. Originality/value – The paper presents important factors in different stages of the whole life cycle of the systems, and reliability and maintainability design approaches which can be helpful for building services system designers. The survey from the questionnaires provides the designers with understanding of key impacting factors.
Resumo:
There is a growing concern in reducing greenhouse gas emissions all over the world. The U.K. has set 34% target reduction of emission before 2020 and 80% before 2050 compared to 1990 recently in Post Copenhagen Report on Climate Change. In practise, Life Cycle Cost (LCC) and Life Cycle Assessment (LCA) tools have been introduced to construction industry in order to achieve this such as. However, there is clear a disconnection between costs and environmental impacts over the life cycle of a built asset when using these two tools. Besides, the changes in Information and Communication Technologies (ICTs) lead to a change in the way information is represented, in particular, information is being fed more easily and distributed more quickly to different stakeholders by the use of tool such as the Building Information Modelling (BIM), with little consideration on incorporating LCC and LCA and their maximised usage within the BIM environment. The aim of this paper is to propose the development of a model-based LCC and LCA tool in order to provide sustainable building design decisions for clients, architects and quantity surveyors, by then an optimal investment decision can be made by studying the trade-off between costs and environmental impacts. An application framework is also proposed finally as the future work that shows how the proposed model can be incorporated into the BIM environment in practise.
Resumo:
Forests are a store of carbon and an eco-system that continually removes carbon dioxide from the atmosphere. If they are sustainably managed, the carbon store can be maintained at a constant level, while the trees removed and converted to timber products can form an additional long term carbon store. The total carbon store in the forest and associated ‘wood chain’ therefore increases over time, given appropriate management. This increasing carbon store can be further enhanced with afforestation. The UK’s forest area has increased continually since the early 1900s, although the rate of increase has declined since its peak in the late 1980s, and it is a similar picture in the rest of Europe. The increased sustainable use of timber in construction is a key market incentive for afforestation, which can make a significant contribution to reducing carbon emissions. The case study presented in this paper demonstrates the carbon benefits of a Cross Laminated Timber (CLT) solution for a multi-storey residential building in comparison with a more conventional reinforced concrete solution. The embodied carbon of the building up to completion of construction is considered, together with the stored carbon during the life of the building and the impact of different end of life scenarios. The results of the study show that the total stored carbon in the CLT structural frame is 1215tCO2 (30tCO2 per housing unit). The choice of treatment at end of life has a significant effect on the whole life embodied carbon of the CLT frame, which ranges from -1017 tCO2e for re-use to +153tCO2e for incinerate without energy recovery. All end of life scenarios considered result in lower total CO2e emissions for the CLT frame building compared with the reinforced concrete frame solution.
Resumo:
The cost of a road construction over its service life is a function of design, quality of construction as well as maintenance strategies and operations. An optimal life-cycle cost for a road requires evaluations of the above mentioned components. Unfortunately, road designers often neglect a very important aspect, namely, the possibility to perform future maintenance activities. Focus is mainly directed towards other aspects such as investment costs, traffic safety, aesthetic appearance, regional development and environmental effects. This doctoral thesis presents the results of a research project aimed to increase consideration of road maintenance aspects in the planning and design process. The following subgoals were established: Identify the obstacles that prevent adequate consideration of future maintenance during the road planning and design process; and Examine optimisation of life-cycle costs as an approach towards increased efficiency during the road planning and design process. The research project started with a literature review aimed at evaluating the extent to which maintenance aspects are considered during road planning and design as an improvement potential for maintenance efficiency. Efforts made by road authorities to increase efficiency, especially maintenance efficiency, were evaluated. The results indicated that all the evaluated efforts had one thing in common, namely ignorance of the interrelationship between geometrical road design and maintenance as an effective tool to increase maintenance efficiency. Focus has mainly been on improving operating practises and maintenance procedures. This fact might also explain why some efforts to increase maintenance efficiency have been less successful. An investigation was conducted to identify the problems and difficulties, which obstruct due consideration of maintainability during the road planning and design process. A method called “Change Analysis” was used to analyse data collected during interviews with experts in road design and maintenance. The study indicated a complex combination of problems which result in inadequate consideration of maintenance aspects when planning and designing roads. The identified problems were classified into six categories: insufficient consulting, insufficient knowledge, regulations and specifications without consideration of maintenance aspects, insufficient planning and design activities, inadequate organisation and demands from other authorities. Several urgent needs for changes to eliminate these problems were identified. One of the problems identified in the above mentioned study as an obstacle for due consideration of maintenance aspects during road design was the absence of a model for calculating life-cycle costs for roads. Because of this lack of knowledge, the research project focused on implementing a new approach for calculating and analysing life-cycle costs for roads with emphasis on the relationship between road design and road maintainability. Road barriers were chosen as an example. The ambition is to develop this approach to cover other road components at a later stage. A study was conducted to quantify repair rates for barriers and associated repair costs as one of the major maintenance costs for road barriers. A method called “Case Study Research Method” was used to analyse the effect of several factors on barrier repairs costs, such as barrier type, road type, posted speed and seasonal effect. The analyses were based on documented data associated with 1625 repairs conducted in four different geographical regions in Sweden during 2006. A model for calculation of average repair costs per vehicle kilometres was created. Significant differences in the barrier repair costs were found between the studied barrier types. In another study, the injuries associated with road barrier collisions and the corresponding influencing factors were analysed. The analyses in this study were based on documented data from actual barrier collisions between 2005 and 2008 in Sweden. The result was used to calculate the cost for injuries associated with barrier collisions as a part of the socio-economic cost for road barriers. The results showed significant differences in the number of injuries associated with collisions with different barrier types. To calculate and analyse life-cycle costs for road barriers a new approach was developed based on a method called “Activity-based Life-cycle Costing”. By modelling uncertainties, the presented approach gives a possibility to identify and analyse factors crucial for optimising life-cycle costs. The study showed a great potential to increase road maintenance efficiency through road design. It also showed that road components with low investment costs might not be the best choice when including maintenance and socio-economic aspects. The difficulties and problems faced during the collection of data for calculating life-cycle costs for road barriers indicated a great need for improving current data collecting and archiving procedures. The research focused on Swedish road planning and design. However, the conclusions can be applied to other Nordic countries, where weather conditions and road design practices are similar. The general methodological approaches used in this research project may be applied also to other studies.
Resumo:
The foraging activity of Geotrigona mombuca Smith, 1863 was studied under natural conditions aiming to verify the influence of seasonal changes on daily flight activity and annual cycle of the colony. Daily flight activity was monitored for a year based on the observation and counting of foragers leaving and entering the hive, as well as the kind of material transported and meteorological factors such as day time, temperature and relative humidity. The influence of seasonal changes was evidenced by alterations on daily rhythm of flight activity and by differences on transportation of food resources, building material and garbage. These data indicate that forager behavior is related to daily microclimate conditions and it is synchronized with the requirements of colony annual cycle, which determines an intense pollen collection in the summer. Thus, the recomposition of the intranidal population in spring and summer can be ensured, which is characterized both for a higher intensity of flight activity and increase in garbage and resin transport, as well as the swarming process in the spring. In this way, an action targeting the preservation or management of the species in a natural environment should consider that survival and reproduction of the colony depends greatly on the amount of available pollen in late winter.
Resumo:
Waste management is becoming, year after year, always more important both for the costs associated with it and for the ever increasing volumes of waste generated. The discussion on the fate of organic fraction of municipal solid waste (OFMSW) leads everyday to new solutions. Many alternatives are proposed, ranging from incineration to composting passing through anaerobic digestion. “For Biogas” is a collaborative effort, between C.I.R.S.A. and R.E.S. cooperative, whose main goal is to generate “green” energy from both biowaste and sludge anaerobic co-digestion. Specifically, the project include a pilot plant receiving dewatered sludge from both urban and agro-industrial sewage (DS) and the organic fraction of MSW (in 2/1 ratio) which is digested in absence of oxygen to produce biogas and digestate. Biogas is piped to a co-generation system producing power and heat reused in the digestion process itself, making it independent from the national grid. Digestate undergoes a process of mechanical separation giving a liquid fraction, introduced in the treatment plant, and a solid fraction disposed in landfill (in future it will be further processed to obtain compost). This work analyzed and estimated the impacts generated by the pilot plant in its operative phase. Once the model was been characterized, on the basis of the CML2001 methodology, a comparison is made with the present scenario assumed for OFMSW and DS. Actual scenario treats separately the two fractions: the organic one is sent to a composting plant, while sludge is sent to landfill. Results show that the most significant difference between the two scenarios is in the GWP category as the project "For Biogas" is able to generate “zero emission” power and heat. It also generates a smaller volume of waste for disposal. In conclusion, the analysis evaluated the performance of two alternative methods of management of OFMSW and DS, highlighting that "For Biogas" project is to be preferred to the actual scenario.
Resumo:
Modern food systems are characterized by a high energy intensity as well as by the production of large amounts of waste, residuals and food losses. This inefficiency presents major consequences, in terms of GHG emissions, waste disposal, and natural resource depletion. The research hypothesis is that residual biomass material could contribute to the energetic needs of food systems, if recovered as an integrated renewable energy source (RES), leading to a sensitive reduction of the impacts of food systems, primarily in terms of fossil fuel consumption and GHG emissions. In order to assess these effects, a comparative life cycle assessment (LCA) has been conducted to compare two different food systems: a fossil fuel-based system and an integrated system with the use of residual as RES for self-consumption. The food product under analysis has been the peach nectar, from cultivation to end-of-life. The aim of this LCA is twofold. On one hand, it allows an evaluation of the energy inefficiencies related to agro-food waste. On the other hand, it illustrates how the integration of bioenergy into food systems could effectively contribute to reduce this inefficiency. Data about inputs and waste generated has been collected mainly through literature review and databases. Energy balance, GHG emissions (Global Warming Potential) and waste generation have been analyzed in order to identify the relative requirements and contribution of the different segments. An evaluation of the energy “loss” through the different categories of waste allowed to provide details about the consequences associated with its management and/or disposal. Results should provide an insight of the impacts associated with inefficiencies within food systems. The comparison provides a measure of the potential reuse of wasted biomass and the amount of energy recoverable, that could represent a first step for the formulation of specific policies on the integration of bioenergies for self-consumption.
Resumo:
The present work is included in the context of the assessment of sustainability in the construction field and is aimed at estimating and analyzing life cycle cost of the existing reinforced concrete bridge “Viadotto delle Capre” during its entire life. This was accomplished by a comprehensive data collection and results evaluation. In detail, the economic analysis of the project is performed. The work has investigated possible design alternatives for maintenance/rehabilitation and end-of-life operations, when structural, functional, economic and also environmental requirements have to be fulfilled. In detail, the economic impact of different design options for the given reinforced concrete bridge have been assessed, whereupon the most economically, structurally and environmentally efficient scenario was chosen. The Integrated Life-Cycle Analysis procedure and Environmental Impact Assessment were also discussed in this work. The scope of this thesis is to illustrate that Life Cycle Cost analysis as part of Life Cycle Assessment approach could be effectively used to drive the design and management strategy of new and existing structures. The final objective of this contribution is to show how an economic analysis can influence decision-making in the definition of the most sustainable design alternatives. The designers can monitor the economic impact of different design strategies in order to identify the most appropriate option.
Resumo:
The objective of this research is to investigate the consequences of sharing or using information generated in one phase of the project to subsequent life cycle phases. Sometimes the assumptions supporting the information change, and at other times the context within which the information was created changes in a way that causes the information to become invalid. Often these inconsistencies are not discovered till the damage has occurred. This study builds on previous research that proposed a framework based on the metaphor of ‘ecosystems’ to model such inconsistencies in the 'supply chain' of life cycle information (Brokaw and Mukherjee, 2012). The outcome of such inconsistencies often results in litigation. Therefore, this paper studies a set of legal cases that resulted from inconsistencies in life cycle information, within the ecosystems framework. For each project, the errant information type, creator and user of the information and their relationship, time of creation and usage of the information in the life cycle of the project are investigated to assess the causes of failure of precise and accurate information flow as well as the impact of such failures in later stages of the project. The analysis shows that the misleading information is mostly due to lack of collaboration. Besides, in all the studied cases, lack of compliance checking, imprecise data and insufficient clarifications hinder accurate and smooth flow of information. The paper presents findings regarding the bottleneck of the information flow process during the design, construction and post construction phases. It also highlights the role of collaboration as well as information integration and management during the project life cycle and presents a baseline for improvement in information supply chain through the life cycle of the project.
Resumo:
This paper asks how takeover and failure hazards change as listed firms get older. The hypothesis is that they increase because firms gradually run out of growth opportunities. We find the opposite. Both takeover and failure hazard drop significantly with age. The decline in takeover hazard can be explained with Loderer, Stulz, and Waelchli’s (2013) “buggy whip makers” hypothesis: Because old firms are comparatively well-managed and are affected by limited agency problems, on average, they offer little value added potential to acquirers. Failure hazard drops because to learning. The results are robust to various alternative interpretations and cannot be explained by unobserved heterogeneity. While hazards decline with age, they do not go to zero. This explains why, eventually, all listed firms disappear
Resumo:
This paper asks how takeover and failure hazards change as listed firms get older. The hypothesis is that they increase because firms gradually run out of growth opportunities. We find the opposite. Both takeover and failure hazard drop significantly with age. The decline in takeover hazard can be explained with Loderer, Stulz, and Waelchli’s (2013) “buggy whip makers” hypothesis: Because old firms are comparatively well-managed and are affected by limited agency problems, on average, they offer little value added potential to acquirers. Failure hazard drops because to learning. The results are robust to various alternative interpretations and cannot be explained by unobserved heterogeneity. While hazards decline with age, they do not go to zero. This explains why, eventually, all listed firms disappear
Resumo:
This paper asks how takeover and failure hazards change as listed firms get older. The hypothesis is that they increase because firms gradually run out of growth opportunities. We find the opposite. Both takeover and failure hazard drop significantly with age. The decline in takeover hazard can be explained with Loderer, Stulz, and Waelchli’s (2013) “buggy whip makers” hypothesis: Because old firms are comparatively well-managed and are affected by limited agency problems, on average, they offer little value added potential to acquirers. Failure hazard drops because to learning. The results are robust to various alternative interpretations and cannot be explained by unobserved heterogeneity. While hazards decline with age, they do not go to zero. This explains why, eventually, all listed firms disappear