932 resultados para life cycle costing
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.
Resumo:
The building life cycle process is complex and prone to fragmentation as it moves through its various stages. The number of participants, and the diversity, specialisation and isolation both in space and time of their activities, have dramatically increased over time. The data generated within the construction industry has become increasingly overwhelming. Most currently available computer tools for the building industry have offered productivity improvement in the transmission of graphical drawings and textual specifications, without addressing more fundamental changes in building life cycle management. Facility managers and building owners are primarily concerned with highlighting areas of existing or potential maintenance problems in order to be able to improve the building performance, satisfying occupants and minimising turnover especially the operational cost of maintenance. In doing so, they collect large amounts of data that is stored in the building’s maintenance database. The work described in this paper is targeted at adding value to the design and maintenance of buildings by turning maintenance data into information and knowledge. Data mining technology presents an opportunity to increase significantly the rate at which the volumes of data generated through the maintenance process can be turned into useful information. This can be done using classification algorithms to discover patterns and correlations within a large volume of data. This paper presents how and what data mining techniques can be applied on maintenance data of buildings to identify the impediments to better performance of building assets. It demonstrates what sorts of knowledge can be found in maintenance records. The benefits to the construction industry lie in turning passive data in databases into knowledge that can improve the efficiency of the maintenance process and of future designs that incorporate that maintenance knowledge.
Resumo:
The report presents a methodology for whole of life cycle cost analysis of alternative treatment options for bridge structures, which require rehabilitation. The methodology has been developed after a review of current methods and establishing that a life cycle analysis based on a probabilistic risk approach has many advantages including the essential ability to consider variability of input parameters. The input parameters for the analysis are identified as initial cost, maintenance, monitoring and repair cost, user cost and failure cost. The methodology utilizes the advanced simulation technique of Monte Carlo simulation to combine a number of probability distributions to establish the distribution of whole of life cycle cost. In performing the simulation, the need for a powerful software package, which would work with spreadsheet program, has been identified. After exploring several products on the market, @RISK software has been selected for the simulation. In conclusion, the report presents a typical decision making scenario considering two alternative treatment options.
Resumo:
n design of bridge structures, it is common to adopt a 100 year design life. However, analysis of a number of case study bridges in Australia has indicated that the actual design life can be significantly reduced due to premature deterioration resulting from exposure to aggressive environments. A closer analysis of the cost of rehabilitation of these structures has raised some interesting questions. What would be the real service life of a bridge exposed to certain aggressive environments? What is the strategy of conducting bridge rehabilitation? And what are the life cycle costs associated with rehabilitation? A research project funded by the CRC for Construction Innovation in Australia is aimed at addressing these issues. This paper presents a concept map for assisting decision makers to appropriately choose the best treatment for bridge rehabilitation affected by premature deterioration through exposure to aggressive environments in Australia. The decision analysis is referred to a whole of life cycle cost analysis by considering appropriate elements of bridge rehabilitation costs. In addition, the results of bridges inspections in Queensland are presented
Resumo:
This paper discusses challenges to developers of a national Life Cycle Inventory (LCI) database on which to base assessment of building environmental impacts and a key to development of a fully integrated eco-design tool created for automated eco-efficiency assessment of commercial building design direct from 3D CAD. The scope of this database includes Australian and overseas processing burdens involved in acquiring, processing, transporting, fabricating, finishing and using metals, masonry, timber, glazing, ceramics, plastics, fittings, composites and coatings. Burdens are classified, calculated and reported for all flows of raw materials, fuels, energy and emissions to and from the air, soil and water associated with typical products and services in building construction, fitout and operation. The aggregated life cycle inventory data provides the capacity to generate environmental impact assessment reports based on accepted performance indicators. Practitioners can identify hot spots showing high environmental burdens of a proposed design and drill down to report on specific building components. They can compare assessments with case studies and operational estimates to assist in eco-efficient design of a building, fitout and operation.
Resumo:
Understanding the differences between the temporal and physical aspects of the building life cycle is an essential ingredient in the development of Building Environmental Assessment (BEA) tools. This paper illustrates a theoretical Life Cycle Assessment (LCA) framework aligning temporal decision-making with that of material flows over building development phases. It was derived during development of a prototype commercial building design tool that was based on a 3-D CAD information and communications technology (ICT) platform and LCA software. The framework aligns stakeholder BEA needs and the decision-making process against characteristics of leading green building tools. The paper explores related integration of BEA tool development applications on such ICT platforms. Key framework modules are depicted and practical examples for BEA are provided for: • Definition of investment and service goals at project initiation; • Design integrated to avoid overlaps/confusion over the project life cycle; • Detailing the supply chain considering building life cycle impacts; • Delivery of quality metrics for occupancy post-construction/handover; • Deconstruction profiling at end of life to facilitate recovery.
Resumo:
Public awareness and the nature of highway construction works demand that sustainability measures are first on the development agenda. However, in the current economic climate, individual volition and enthusiasm for such high capital investments do not present as strong cases for decision making as the financial pictures of pursuing sustainability. Some stakeholders consider sustainability to be extra work that costs additional money. Though, stakeholders realised its importance in infrastructure development. They are keen to identify the available alternatives and financial implications on a lifecycle basis. Highway infrastructure development is a complex rocess which requires expertise and tools to evaluate investment options, such as environmentally sustainable features for road and highway development. Life-cycle cost analysis (LCCA) is a valuable approach for investment decision making for construction works. However, LCCA applications in highway development are still limited. Current models, for example focus on economic issues alone and do not deal with sustainability factors, which are more difficult to quantify and encapsulate in estimation modules. This paper reports the research which identifies sustainability related factors in highway construction projects, in quantitative and qualitative forms of a multi-criteria analysis. These factors are then incorporated into past and proven LCCA models to produce a new long term decision support model. The research via questionnaire, model building, analytical hierarchy processes (AHP) and case studies have identified, evaluated and then processed highway sustainability related cost elements. These cost elements need to be verified by industry before being integrated for further development of the model. Then the Australian construction industry will have a practical tool to evaluate investment decisions which provide an optimum balance between financial viability and sustainability deliverables.
Resumo:
Life-cycle management (LCM) has been employed in the management of construction projects for many years in order to reduce whole life cost, time, risk and improve the service to owners. However, owing to lack of an effective information sharing platform, the current LCM of construction projects is not effectively used in the construction industry. Based upon the analysis of the information flow of LCM, a virutal prototyping (VP)-based communication and collaboration information platform is proposed. Following this, the platform is customized using DASSAULT sofware. The whole process of implementing the VP-based LCM are also discussed and, from a simple case study, it is demonstrated that the VP-based communication and collaboration information platform is an effective tool to support the LCM of construction projects.
Resumo:
This paper uses the lens of life-cycle thinking to discuss recent developments in the Australian mass market fashion industry, and to explore the opportunities and barriers to implementing lifecycle thinking within mass market design processes. Life-cycle analysis is a quantitative tool used to assess the environmental impact of a material or product. However the underlying thinking of life-cycle analysis can also be employed more generally, enabling a designer to assess their processes and design decisions for sustainability. A fashion designer employing life cycle thinking would consider every stage in the life of a garment from fibre and textiles through to consumer use, to eventual disposal and beyond disposal to reuse and later disassembly for fibre recycling. Although life-cycle thinking is rarely considered in the design processes of the fast-paced, price-driven mass market, this paper explores its potential and suggests ways in which it could be implemented.
Resumo:
Despite of a significant contribution of transport sector in the global economy and society, it is one of the largest sources of global energy consumption, green house gas emissions and environmental pollutions. A complete look onto the whole life cycle environmental inventory of this sector will be helpful to generate a holistic understanding of contributory factors causing emissions. Previous studies were mainly based on segmental views which mostly compare environmental impacts of different modes of transport, but very few consider impacts other than the operational phase. Ignoring the impacts of non-operational phases, e.g., manufacture, construction, maintenance, may not accurately reflect total contributions on emissions. Moreover an integrated study for all motorized modes of road transport is also needed to achieve a holistic estimation. The objective of this study is to develop a component based life cycle inventory model which considers impacts of both operational and non-operational phases of the whole life as well as different transport modes. In particular, the whole life cycle of road transport has been segmented into vehicle, infrastructure, fuel and operational components and inventories have been conducted on each component. The inventory model has been demonstrated using the road transport of Singapore. Results show that total life cycle green house gas emissions from the road transport sector of Singapore is 7.8 million tons per year, among which operational phase and non-operational phases contribute about 55% and about 45%, respectively. Total amount of criteria air pollutants are 46, 8.5, 33.6, 13.6 and 2.6 thousand tons per year for CO, SO2, NOx, VOC and PM10, respectively. From the findings, it can be deduced that stringent government policies on emission control measures have a significant impact on reducing environmental pollutions. In combating global warming and environmental pollutions the promotion of public transport over private modes is an effective sustainable policy.
Resumo:
Designing practical rules for controlling invasive species is a challenging task for managers, particularly when species are long-lived, have complex life cycles and high dispersal capacities. Previous findings derived from plant matrix population analyses suggest that effective control of long-lived invaders may be achieved by focusing on killing adult plants. However, the cost-effectiveness of managing different life stages has not been evaluated. We illustrate the benefits of integrating matrix population models with decision theory to undertake this evaluation, using empirical data from the largest infestation of mesquite (Leguminosae: Prosopis spp) within Australia. We include in our model the mesquite life cycle, different dispersal rates and control actions that target individuals at different life stages with varying costs, depending on the intensity of control effort. We then use stochastic dynamic programming to derive cost-effective control strategies that minimize the cost of controlling the core infestation locally below a density threshold and the future cost of control arising from infestation of adjacent areas via seed dispersal. Through sensitivity analysis, we show that four robust management rules guide the allocation of resources between mesquite life stages for this infestation: (i) When there is no seed dispersal, no action is required until density of adults exceeds the control threshold and then only control of adults is needed; (ii) when there is seed dispersal, control strategy is dependent on knowledge of the density of adults and large juveniles (LJ) and broad categories of dispersal rates only; (iii) if density of adults is higher than density of LJ, controlling adults is most cost-effective; (iv) alternatively, if density of LJ is equal or higher than density of adults, management efforts should be spread between adults, large and to a lesser extent small juveniles, but never saplings. Synthesis and applications.In this study, we show that simple rules can be found for managing invasive plants with complex life cycles and high dispersal rates when population models are combined with decision theory. In the case of our mesquite population, focussing effort on controlling adults is not always the most cost-effective way to meet our management objective.
Resumo:
Poem
Resumo:
The construction industry has been under pressure for many years to produce economical buildings which offer value for money, not only during the construction phase, but more importantly, during the full life of the building. Whole Life Cycle Costing (WLCC) is a relatively new concept for the construction industry especially on residential development and particularly for Malaysia. Discussing the speculation in using WLCC for the Malaysian residential constructions is the aim for this paper and it is one of the research questions on my research. This paper also wants to gather more speculation that may involve through others experienced. Basically, this paper is written to facilitate the current or future individual which will involve in residential property development sector with a new sensible approach to what at times seems impressively confusing especially in simplifying the operations and maintenance services and rehabilitation as well.