965 resultados para leucine aminopeptidase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arabidopsis thaliana NPR1 has been shown to be a key regulator of gene expression during the onset of a plant disease-resistance response known as systemic acquired resistance. The npr1 mutant plants fail to respond to systemic acquired resistance-inducing signals such as salicylic acid (SA), or express SA-induced pathogenesis-related (PR) genes. Using NPR1 as bait in a yeast two-hybrid screen, we identified a subclass of transcription factors in the basic leucine zipper protein family (AHBP-1b and TGA6) and showed that they interact specifically in yeast and in vitro with NPR1. Point mutations that abolish the NPR1 function in A. thaliana also impair the interactions between NPR1 and the transcription factors in the yeast two-hybrid assay. Furthermore, a gel mobility shift assay showed that the purified transcription factor protein, AHBP-1b, binds specifically to an SA-responsive promoter element of the A. thaliana PR-1 gene. These data suggest that NPR1 may regulate PR-1 gene expression by interacting with a subclass of basic leucine zipper protein transcription factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study investigated the effect of chemical conjugation of the amino acid L-leucine to the polysaccharide chitosan on the dispersibility and drug release pattern of a polymeric nanoparticle (NP)-based controlled release dry powder inhaler (DPI) formulation. Methods: A chemical conjugate of L-leucine with chitosan was synthesized and characterized by Infrared (IR) Spectroscopy, Nuclear Magnetic Resonance (NMR) Spectroscopy, Elemental Analysis and X-ray Photoelectron Spectroscopy (XPS). Nanoparticles of both chitosan and its conjugate were prepared by a water-in-oil emulsification – glutaraldehyde cross-linking method using the antihypertensive agent, diltiazem (Dz) hydrochloride as the model drug. The surface morphology and particle size distribution of the nanoparticles were determined by Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS). The dispersibility of the nanoparticle formulation was analysed by a Twin Stage Impinger (TSI) with a Rotahaler as the DPI device. Deposition of the particles in the different stages was determined by gravimetry and the amount of drug released was analysed by UV spectrophotometry. The release profile of the drug was studied in phosphate buffered saline at 37 ⁰C and analyzed by UV spectrophotometry. Results: The TSI study revealed that the fine particle fractions (FPF), as determined gravimetrically, for empty and drug-loaded conjugate nanoparticles were significantly higher than for the corresponding chitosan nanoparticles (24±1.2% and 21±0.7% vs 19±1.2% and 15±1.5% respectively; n=3, p<0.05). The FPF of drug-loaded chitosan and conjugate nanoparticles, in terms of the amount of drug determined spectrophotometrically, had similar values (21±0.7% vs 16±1.6%). After an initial burst, both chitosan and conjugate nanoparticles showed controlled release that lasted about 8 to 10 days, but conjugate nanoparticles showed twice as much total drug release compared to chitosan nanoparticles (~50% vs ~25%). Conjugate nanoparticles also showed significantly higher dug loading and entrapment efficiency than chitosan nanoparticles (conjugate: 20±1% & 46±1%, chitosan: 16±1% & 38±1%, n=3, p<0.05). Conclusion: Although L-leucine conjugation to chitosan increased dispersibility of formulated nanoparticles, the FPF values are still far from optimum. The particles showed a high level of initial burst release (chitosan, 16% and conjugate, 31%) that also will need further optimization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptidases are ubiquitous enzymes involved in diverse biological processes. Fragments from bioactive peptides have been found in skin secretions from frogs, and their presence suggests processing by peptidases. Thus, the aim of this work was to characterize the peptidase activity present in the skin secretion of Leptodactylus labyrinthicus. Zymography revealed the presence of three bands of gelatinase activity of approximately 60 kDa, 66 kDa, and 80 kDa, which the first two were calcium-dependent. These three bands were inhibited either by ethylenediaminetetraacetic acid (EDTA) and phenathroline; thus, they were characterized as metallopeptidases. Furthermore, the proteolytic enzymes identified were active only at pH 6.0–10.0, and their activity increased in the presence of CHAPS or NaCl. Experiments with fluorogenic substrates incubated with skin secretions identified aminopeptidase activity, with cleavage after leucine, proline, and alanine residues. This activity was directly proportional to the protein concentration, and it was inhibited in the presence of metallo and serine peptidase inhibitors. Besides, the optimal pH for substrate cleavage was determined to be 7.0–8.0. The results of the in gel activity assay showed that all substrates were hydrolyzed by a 45 kDa peptidase. Gly-Pro-AMC was also cleaved by a peptidase greater than 97 kDa. The data suggest the presence of dipeptidyl peptidases (DPPs) and metallopeptidases; however, further research is necessary. In conclusion, our work will help to elucidate the implication of these enzymatic activities in the processing of the bioactive peptides present in frog venom, expanding the knowledge of amphibian biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein are reported the synthesis of a conjugate of chitosan with L-leucine, the preparation of nanoparticles from both chitosan and the conjugate for use in pulmonary drug delivery, and the in vitro evaluation of toxicity and inflammatory effects of both the polymers and their nanoparticles on the bronchial epithelial cell line, BEAS-2B. The nanoparticles, successfully prepared both from chitosan and the conjugate, had a diameter in the range of 10−30 nm. The polymers and their nanoparticles were tested for their effects on cell viability by MTT assay, on trans-epithelial permeability by using sodium fluorescein as a fluid phase marker, and on IL-8 secretion by ELISA. The conjugate nanoparticles had a low overall toxicity (IC50 = 2 mg/mL following 48 h exposure; no induction of IL-8 release at 0.5 mg/mL concentration), suggesting that they may be safe for pulmonary drug delivery applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leucine is a key amino acid for initiating translation in muscle cells, but the dose-dependent effects of leucine on intracellular signaling are poorly characterized. This study examined the effect that increasing doses of leucine would have on changes in mechanistic target of rapamycin (mTOR)–mediated signaling, rates of protein synthesis, and cell size in C2C12 cells. We hypothesized that a leucine “threshold” exists, which represents the minimum stimulus required to initiate mTOR signaling in muscle cells. Acute exposure to 1.5, 3.2, 5.0, and 16.1 mM leucine increased phosphorylation of mTORSer2448 (~1.4-fold; P < .04), 4E-BP1 Thr37/46 (~1.9-fold; P < .001), and rpS6Ser235/6 (~2.3-fold; P < .001). However, only p70S6kThr389 exhibited a dose-dependent response to leucine with all treatments higher than control (~4-fold; P < .001) and at least 5 mM higher than the 1.5-mM concentration (1.2-fold; P < .02). Rates of protein synthesis were not altered by any treatment. Seven days of exposure to 0.5, 1.5, 5.0, and 16.5 mM leucine resulted in an increase in cell size in at least 5 mM treatments (~1.6-fold, P < .001 vs control). Our findings indicate that even at low leucine concentrations, phosphorylation of proteins regulating translation initiation signaling is enhanced. The phosphorylation of p70S6kThr389 follows a leucine dose-response relationship, although this was not reflected by the acute protein synthetic response. Nevertheless, under the conditions of the present study, it appears that leucine concentrations of at least 5 mM are necessary to enhance cell growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endoplasmatic reticulum aminopeptidase 1 (ERAP1) is a multifunctional enzyme involved in trimming of peptides to an optimal length for presentation by major histocompatibility complex (MHC) class I molecules. Polymorphisms in ERAP1 have been associated with chronic inflammatory diseases, including ankylosing spondylitis (AS) and psoriasis, and subsequent in vitro enzyme studies suggest distinct catalytic properties of ERAP1 variants. To understand structure-activity relationships of this enzyme we determined crystal structures in open and closed states of human ERAP1, which provide the first snapshots along a catalytic path. ERAP1 is a zinc-metallopeptidase with typical H-E-X-X-H-(X)18-E zinc binding and G-A-M-E-N motifs characteristic for members of the gluzincin protease family. The structures reveal extensive domain movements, including an active site closure as well as three different open conformations, thus providing insights into the catalytic cycle. A K 528R mutant strongly associated with AS in GWAS studies shows significantly altered peptide processing characteristics, which are possibly related to impaired interdomain interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The host-guest technique has been applied to the determination of the helix-coil stability constants of two naturally occurring amino acids, L-alanine and L-leucine, in a nonaqueous solvent system. Random copolymers containing L-alanine and L-leucine, respectively, as guest residues and -benzyl-L-glutamate as the host residue were synthesized. The polymers were fractionated and characterized for their amino acid content, molecular weight, and helix-coil transition behavior in a dichloroacetic acid (DCA)-1,2-dichloroethane (DCE) mixture. Two types of helix-coil transitions were carried out on the copolymers: solvent-induced transitions in DCA-DCE mixtures at 25°C and thermally induced transitions in a 82:18 (wt %) DCA-DCE mixture. The thermally induced transitions were analyzed by statistical mechanical methods to determine the Zimm-Bragg parameters, and s, of the guest residues. The experimental data indicate that, in the nonaqueous solvent, the L-alanine residue stabilizes the -helical conformation more than the L-leucine residue does. This is in contrast to their behavior in aqueous solution, where the reverse is true. The implications of this finding for the analysis of helical structures in globular proteins are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic engineering of Bacillus thuringiensis (Bt) Cry proteins has resulted in the synthesis of various novel toxin proteins with enhanced insecticidal activity and specificity towards different insect pests. In this study, a fusion protein consisting of the DI–DII domains of Cry1Ac and garlic lectin (ASAL) has been designed in silico by replacing the DIII domain of Cry1Ac with ASAL. The binding interface between the DI–DII domains of Cry1Ac and lectin has been identified using protein–protein docking studies. Free energy of binding calculations and interaction profiles between the Cry1Ac and lectin domains confirmed the stability of fusion protein. A total of 18 hydrogen bonds was observed in the DI–DII–lectin fusion protein compared to 11 hydrogen bonds in the Cry1Ac (DI–DII–DIII) protein. Molecular mechanics/Poisson–Boltzmann (generalized-Born) surface area [MM/PB (GB) SA] methods were used for predicting free energy of interactions of the fusion proteins. Protein–protein docking studies based on the number of hydrogen bonds, hydrophobic interactions, aromatic–aromatic, aromatic–sulphur, cation–pi interactions and binding energy of Cry1Ac/fusion proteins with the aminopeptidase N (APN) of Manduca sexta rationalised the higher binding affinity of the fusion protein with the APN receptor compared to that of the Cry1Ac–APN complex, as predicted by ZDOCK, Rosetta and ClusPro analysis. The molecular binding interface between the fusion protein and the APN receptor is well packed, analogously to that of the Cry1Ac–APN complex. These findings offer scope for the design and development of customized fusion molecules for improved pest management in crop plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have determined relative levels of chloroplast leucine and tyrosine isoaccepting tRNAs and modified nucleotide contents from total tRNAs isolated from dark-grown, light-grown, N6-isopentenyladenine (i6A)-treated dark-grown and i6A-treated light-grown cucumber seedlings. Significant increases in the relative amounts of tRNA(Leu)2 and tRNA(Leu)3 were observed in the i6A-treated dark-grown seedlings compared to dark-grown, light-grown and i6A-treated light-grown seedlings. On the other hand, i6A-treated light-grown seedlings tRNA(Tyr)1 increased to 85% of total tRNAs(Tyr) from about 9% in light-grown seedlings and tRNA(Tyr)2 decreased to 15% compared with 91% in light-grown seedlings. Analysis of modified nucleotide of total tRNAs indicated that pT, pI, pm1A, pm5C, pGm, pm1G, pm2G and pm7G contents were significantly higher in the total tRNA of i6A-treated dark-grown seedlings than those from untreated dark-grown seedlings. Illumination of 8-day-old dark-grown seedlings for 12 h increased the contents of pT, pI, pGm and pm1G when compared to 8-day-old dark-grown seedlings with extended growth for 12 h in dark. On the contrary, i6A had no stimulatory effect in the contents of modified nucleotide in the light-grown seedlings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solution structures of a 23 residue glycopeptide II (KIS* RFLLYMKNLLNRIIDDMVEQ, where * denotes the glycan Gal-beta-(1-3)-alpha-GalNAc) and its deglycosylated counterpart I derived from the C-terminal leucine zipper domain of low molecular weight human salivary mucin (MUC7) were studied using CD, NMR spectroscopy and molecular modeling. The peptide I was synthesized using the Fmoc chemistry following the conventional procedure and the glycopeptide II was synthesized incorporating the O-glycosylated building block (N alpha-Fmoc-Ser-[Ac-4,-beta-D-Gal-(1,3)-Ac(2)alpha-D-GalN(3)]-OPfp) at the appropriate position in stepwise assembly of peptide chain. Solution structures of these glycosylated and nonglycosylated peptides were studied in water and in the presence of 50% of an organic cosolvent, trifluoroethanol (TFE) using circular dichroism (CD), and in 50% TFE using two-dimensional proton nuclear magnetic resonance (2D H-1 NMR) spectroscopy. CD spectra in aqueous medium indicate that the apopeptide I adapts, mostly, a beta-sheet conformation whereas the glycopeptide II assumes helical structure. This transition in the secondary structure, upon glycosylation, demonstrates that the carbohydrate moiety exerts significant effect on the peptide backbone conformation. However, in 50% TFE both the peptides show pronounced helical structure. Sequential and medium range NOEs, C alpha H chemical shift perturbations, (3)J(NH:C alpha H) couplings and deuterium exchange rates of the amide proton resonances in water containing 50% TFE indicate that the peptide I adapts alpha-helical structure from Ile2-Val21 and the glycopeptide II adapts alpha-helical structure from Ser3-Glu22. The observation of continuous stretch of helix in both the peptides as observed by both NMR and CD spectroscopy strongly suggests that the C-terminal domain of MUC7 with heptad repeats of leucines or methionine residues may be stabilized by dimeric leucine zipper motif. The results reported herein may be invaluable in understanding the aggregation (or dimerization) of MUC7 glycoprotein which would eventually have implications in determining its structure-function relationship.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C15H22N204.H20 , Mr= 312.37, monoclinic,P21, a=5.577(2), b=8.686(2), c= 16.228 (2) A,fl=92.63(2) ° , V=785(1)A 3, Z=2, O =1.34,Dx= 1.32Mgm -3, CuKa, 2= 1.54184'~, /2=0.78 mm -I, F(000) = 320, T= 293 K. The final R value for 1607 observed reflections ll,,>_3tr(l,,)l is 0.039. The terminal N 1 is protonated and the dipeptide exists as a zwitterion. The crystal structure is stabilized by extensive hydrogen-bonding interactions involving N and O atoms, with N...O in the range 2.65 (1)-2.95 (1) ,/~ and O...O in the range 2.60 (1)-2.78 (1) A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guanylate cyclase activating protein-1 (GCAP1) is required for activation of retinal guanylate cyclase-1 (RetGC1), which is essential for recovery of photoreceptor cells to the dark state. In this paper, experimentally derived observations are reported that help in explaining why a proline→leucine mutation at position 50 of human GCAP1 results in cone–rod dystrophy in a family carrying this mutation. The primary amino acid sequence of wild-type GCAP1 was mutated using site-directed mutagenesis to give a leucine at position 50. In addition, serine replaced a glutamic acid residue at position 6 to promote N‐terminal myristoylation, yielding the construct GCAP1 E6S/P50L. The enzyme was over-expressed in Escherichia coli cells, isolated and purified before being used in assays with RetGC1, characterized by circular dichroism (CD) spectroscopy, and investigated for protease resistance and thermal stability. Assays of cyclic guanosine monophosphate (cGMP) synthesis from guanosine triphosphate by RetGC1 in the presence of E6S/P50L showed that E6S/P50L could activate RetGC1 and displayed similar calcium sensitivity to wild-type GCAP1. In addition, E6S/P50L and wild-type GCAP1 possess similar CD spectra. However, there was a marked increase in the susceptibility to protease degradation and also a reduction in the thermal stability of E6S/P50L as observed by both the cGMP assay and CD spectroscopy. It is therefore suggested that although GCAP1 E6S/P50L has a similar activity and calcium dependency profile to the wild-type GCAP1, its lower stability could reduce its cellular concentration, which would in turn alter [Ca2+] and result in death of cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distinctions between isobaric residues have been a major challenge in mass spectrometric peptide sequencing. Here, we propose a methodology for distinction among isobaric leucine, isoleucine, and hydroxyproline, a commonly found post-translationally modified amino acid with a nominal mass of 113 Da, through a combined electron transfer dissociation-collision-induced dissociation approach. While the absence of c and z(center dot) ions, corresponding to the Yyy-Xxx (Xxx = Leu, Ile, or Hyp) segment, is indicative of the presence of hydroxyproline, loss of isopropyl (Delta m = 43 Da) or ethyl radicals (Delta m = 29 Da), through collisional activation of z(center dot) radical ions, are characteristic of leucine or isoleucine, respectively. Radical migration processes permit distinctions even in cases where the specific e ions, corresponding to the Yyy-Leu or -Ile segments, are absent or of low intensity. This tandem mass spectrometric (MSn) method has been successfully implemented in a liquid chromatography MSn platform to determine the identity of 23 different isobaric residues from a mixture of five different peptides. The approach is convenient for distinction of isobaric residues from any crude peptide mixture, typically encountered in natural peptide libraries or proteomic analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natural product fumagillin exhibits potent antiproliferative and antiangiogenic properties. The semisynthetic analog PPI-2458, (3R,4S,5S,6R)-5-methoxy-4-(2R,3R)-2-methyl-3-(3-methylbut-2-enyl) oxiran-2-yl]-1-oxaspiro2.5]octan-6-yl] N-(2R)-1-amino-3-methyl-1-oxobutan-2-yl]carbamate, demonstrates rapid inactivation of its molecular target, methionine aminopeptidase-2 (MetAP2), and good efficacy in several rodent models of cancer and inflammation with oral dosing despite low apparent oral bioavailability. To probe the basis of its in vivo efficacy, the metabolism of PPI-2458 was studied in detail. Reaction phenotyping identified CYP3A4/5 as the major source of metabolism in humans. Six metabolites were isolated from liver microsomes and characterized by mass spectrometry and nuclear resonance spectroscopy, and their structures were confirmed by chemical synthesis. The synthetic metabolites showed correlated inhibition of MetAP2 enzymatic activity and vascular endothelial cell growth. In an ex vivo experiment, MetAP2 inhibition in white blood cells, thymus, and lymph nodes in rats after single dosing with PPI-2458 and the isolated metabolites was found to correlate with the in vitro activity of the individual species. In a phase 1 clinical study, PPI-2458 was administered to patients with non-Hodgkin lymphoma. At 15 mg administered orally every other day, MetAP2 in whole blood was 80% inactivated for up to 48 hours, although the exposure of the parent compound was only similar to 10% that of the summed cytochrome P450 metabolites. Taken together, the data confirm the participation of active metabolites in the in vivo efficacy of PPI-2458. The structures define a metabolic pathway for PPI-2458 that is distinct from that of TNP-470 ((3R, 4S, 5S, 6R)-5-methoxy-4-(2R, 3R)-2-methyl-3-(3-methylbut-2-enyl)oxiran-2-yl]-1-oxaspiro2.5]octan-6 -yl] N-(2-chloroacetyl)carbamate). The high level of MetAP2 inhibition achieved in vivo supports the value of fumagillin-derived therapeutics for angiogenic diseases.