999 resultados para les modèles génératifs
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Cette thèse développe des méthodes bootstrap pour les modèles à facteurs qui sont couram- ment utilisés pour générer des prévisions depuis l'article pionnier de Stock et Watson (2002) sur les indices de diffusion. Ces modèles tolèrent l'inclusion d'un grand nombre de variables macroéconomiques et financières comme prédicteurs, une caractéristique utile pour inclure di- verses informations disponibles aux agents économiques. Ma thèse propose donc des outils éco- nométriques qui améliorent l'inférence dans les modèles à facteurs utilisant des facteurs latents extraits d'un large panel de prédicteurs observés. Il est subdivisé en trois chapitres complémen- taires dont les deux premiers en collaboration avec Sílvia Gonçalves et Benoit Perron. Dans le premier article, nous étudions comment les méthodes bootstrap peuvent être utilisées pour faire de l'inférence dans les modèles de prévision pour un horizon de h périodes dans le futur. Pour ce faire, il examine l'inférence bootstrap dans un contexte de régression augmentée de facteurs où les erreurs pourraient être autocorrélées. Il généralise les résultats de Gonçalves et Perron (2014) et propose puis justifie deux approches basées sur les résidus : le block wild bootstrap et le dependent wild bootstrap. Nos simulations montrent une amélioration des taux de couverture des intervalles de confiance des coefficients estimés en utilisant ces approches comparativement à la théorie asymptotique et au wild bootstrap en présence de corrélation sérielle dans les erreurs de régression. Le deuxième chapitre propose des méthodes bootstrap pour la construction des intervalles de prévision permettant de relâcher l'hypothèse de normalité des innovations. Nous y propo- sons des intervalles de prédiction bootstrap pour une observation h périodes dans le futur et sa moyenne conditionnelle. Nous supposons que ces prévisions sont faites en utilisant un ensemble de facteurs extraits d'un large panel de variables. Parce que nous traitons ces facteurs comme latents, nos prévisions dépendent à la fois des facteurs estimés et les coefficients de régres- sion estimés. Sous des conditions de régularité, Bai et Ng (2006) ont proposé la construction d'intervalles asymptotiques sous l'hypothèse de Gaussianité des innovations. Le bootstrap nous permet de relâcher cette hypothèse et de construire des intervalles de prédiction valides sous des hypothèses plus générales. En outre, même en supposant la Gaussianité, le bootstrap conduit à des intervalles plus précis dans les cas où la dimension transversale est relativement faible car il prend en considération le biais de l'estimateur des moindres carrés ordinaires comme le montre une étude récente de Gonçalves et Perron (2014). Dans le troisième chapitre, nous suggérons des procédures de sélection convergentes pour les regressions augmentées de facteurs en échantillons finis. Nous démontrons premièrement que la méthode de validation croisée usuelle est non-convergente mais que sa généralisation, la validation croisée «leave-d-out» sélectionne le plus petit ensemble de facteurs estimés pour l'espace généré par les vraies facteurs. Le deuxième critère dont nous montrons également la validité généralise l'approximation bootstrap de Shao (1996) pour les regressions augmentées de facteurs. Les simulations montrent une amélioration de la probabilité de sélectionner par- cimonieusement les facteurs estimés comparativement aux méthodes de sélection disponibles. L'application empirique revisite la relation entre les facteurs macroéconomiques et financiers, et l'excès de rendement sur le marché boursier américain. Parmi les facteurs estimés à partir d'un large panel de données macroéconomiques et financières des États Unis, les facteurs fortement correlés aux écarts de taux d'intérêt et les facteurs de Fama-French ont un bon pouvoir prédictif pour les excès de rendement.
Resumo:
[…] À l'aide de ce travail, je désire produire ou identifier dans une recherche, les attentes ou les besoins des enseignants en supervision, de façon à développer un vrai contexte adéquat de relation d'aide, c'est-à-dire d'expression et de satisfaction de besoins mutuels. Dans une époque où tous les intervenants du monde de l'éducation (lire ici États Généraux) ont manifesté un besoin éminent de superviser dans le but d'améliorer la qualité de l'enseignement à l'école primaire et secondaire, il deviendrait très avantageux de connaître les besoins et les réticences de chacun en matière de supervision pédagogique, afin d'en tirer des lignes de force permettant de rendre cette supervision dite essentielle, efficace et désirée de tous.
Resumo:
Cette recherche exploratoire vise à cerner une réalité mal connue, soit les représentations des enseignants du primaire sur des modèles de planification interdisciplinaire dans lesquels les arts sont intégrés. Pour atteindre cette réalité, nous avons rencontré six enseignants du deuxième cycle du primaire. En nous appuyant sur une méthodologie de type qualitatif, nous avons recueilli six productions écrites sur une planification interdisciplinaire et, à l'aide de deux entrevues semi-dirigées, nous avons reçu les témoignages de chaque enseignant. L'analyse et les résultats de notre recherche font ressortir les représentations des enseignants sur l'interdisciplinarité scolaire, les objets et les modèles de planification interdisciplinaire ainsi que l'intégration des arts dans une intervention éducative interdisciplinaire. Cependant, compte tenu que nous n'avons rencontré que six enseignants, les résultats de notre étude ne peuvent être généralisés à l'ensemble des enseignants.
Resumo:
Cette thèse développe des méthodes bootstrap pour les modèles à facteurs qui sont couram- ment utilisés pour générer des prévisions depuis l'article pionnier de Stock et Watson (2002) sur les indices de diffusion. Ces modèles tolèrent l'inclusion d'un grand nombre de variables macroéconomiques et financières comme prédicteurs, une caractéristique utile pour inclure di- verses informations disponibles aux agents économiques. Ma thèse propose donc des outils éco- nométriques qui améliorent l'inférence dans les modèles à facteurs utilisant des facteurs latents extraits d'un large panel de prédicteurs observés. Il est subdivisé en trois chapitres complémen- taires dont les deux premiers en collaboration avec Sílvia Gonçalves et Benoit Perron. Dans le premier article, nous étudions comment les méthodes bootstrap peuvent être utilisées pour faire de l'inférence dans les modèles de prévision pour un horizon de h périodes dans le futur. Pour ce faire, il examine l'inférence bootstrap dans un contexte de régression augmentée de facteurs où les erreurs pourraient être autocorrélées. Il généralise les résultats de Gonçalves et Perron (2014) et propose puis justifie deux approches basées sur les résidus : le block wild bootstrap et le dependent wild bootstrap. Nos simulations montrent une amélioration des taux de couverture des intervalles de confiance des coefficients estimés en utilisant ces approches comparativement à la théorie asymptotique et au wild bootstrap en présence de corrélation sérielle dans les erreurs de régression. Le deuxième chapitre propose des méthodes bootstrap pour la construction des intervalles de prévision permettant de relâcher l'hypothèse de normalité des innovations. Nous y propo- sons des intervalles de prédiction bootstrap pour une observation h périodes dans le futur et sa moyenne conditionnelle. Nous supposons que ces prévisions sont faites en utilisant un ensemble de facteurs extraits d'un large panel de variables. Parce que nous traitons ces facteurs comme latents, nos prévisions dépendent à la fois des facteurs estimés et les coefficients de régres- sion estimés. Sous des conditions de régularité, Bai et Ng (2006) ont proposé la construction d'intervalles asymptotiques sous l'hypothèse de Gaussianité des innovations. Le bootstrap nous permet de relâcher cette hypothèse et de construire des intervalles de prédiction valides sous des hypothèses plus générales. En outre, même en supposant la Gaussianité, le bootstrap conduit à des intervalles plus précis dans les cas où la dimension transversale est relativement faible car il prend en considération le biais de l'estimateur des moindres carrés ordinaires comme le montre une étude récente de Gonçalves et Perron (2014). Dans le troisième chapitre, nous suggérons des procédures de sélection convergentes pour les regressions augmentées de facteurs en échantillons finis. Nous démontrons premièrement que la méthode de validation croisée usuelle est non-convergente mais que sa généralisation, la validation croisée «leave-d-out» sélectionne le plus petit ensemble de facteurs estimés pour l'espace généré par les vraies facteurs. Le deuxième critère dont nous montrons également la validité généralise l'approximation bootstrap de Shao (1996) pour les regressions augmentées de facteurs. Les simulations montrent une amélioration de la probabilité de sélectionner par- cimonieusement les facteurs estimés comparativement aux méthodes de sélection disponibles. L'application empirique revisite la relation entre les facteurs macroéconomiques et financiers, et l'excès de rendement sur le marché boursier américain. Parmi les facteurs estimés à partir d'un large panel de données macroéconomiques et financières des États Unis, les facteurs fortement correlés aux écarts de taux d'intérêt et les facteurs de Fama-French ont un bon pouvoir prédictif pour les excès de rendement.
Resumo:
L'entraînement sans surveillance efficace et inférence dans les modèles génératifs profonds reste un problème difficile. Une approche assez simple, la machine de Helmholtz, consiste à entraîner du haut vers le bas un modèle génératif dirigé qui sera utilisé plus tard pour l'inférence approximative. Des résultats récents suggèrent que de meilleurs modèles génératifs peuvent être obtenus par de meilleures procédures d'inférence approximatives. Au lieu d'améliorer la procédure d'inférence, nous proposons ici un nouveau modèle, la machine de Helmholtz bidirectionnelle, qui garantit qu'on peut calculer efficacement les distributions de haut-vers-bas et de bas-vers-haut. Nous y parvenons en interprétant à les modèles haut-vers-bas et bas-vers-haut en tant que distributions d'inférence approximative, puis ensuite en définissant la distribution du modèle comme étant la moyenne géométrique de ces deux distributions. Nous dérivons une borne inférieure pour la vraisemblance de ce modèle, et nous démontrons que l'optimisation de cette borne se comporte en régulisateur. Ce régularisateur sera tel que la distance de Bhattacharyya sera minisée entre les distributions approximatives haut-vers-bas et bas-vers-haut. Cette approche produit des résultats de pointe en terme de modèles génératifs qui favorisent les réseaux significativement plus profonds. Elle permet aussi une inférence approximative amérliorée par plusieurs ordres de grandeur. De plus, nous introduisons un modèle génératif profond basé sur les modèles BiHM pour l'entraînement semi-supervisé.
Resumo:
L'entraînement sans surveillance efficace et inférence dans les modèles génératifs profonds reste un problème difficile. Une approche assez simple, la machine de Helmholtz, consiste à entraîner du haut vers le bas un modèle génératif dirigé qui sera utilisé plus tard pour l'inférence approximative. Des résultats récents suggèrent que de meilleurs modèles génératifs peuvent être obtenus par de meilleures procédures d'inférence approximatives. Au lieu d'améliorer la procédure d'inférence, nous proposons ici un nouveau modèle, la machine de Helmholtz bidirectionnelle, qui garantit qu'on peut calculer efficacement les distributions de haut-vers-bas et de bas-vers-haut. Nous y parvenons en interprétant à les modèles haut-vers-bas et bas-vers-haut en tant que distributions d'inférence approximative, puis ensuite en définissant la distribution du modèle comme étant la moyenne géométrique de ces deux distributions. Nous dérivons une borne inférieure pour la vraisemblance de ce modèle, et nous démontrons que l'optimisation de cette borne se comporte en régulisateur. Ce régularisateur sera tel que la distance de Bhattacharyya sera minisée entre les distributions approximatives haut-vers-bas et bas-vers-haut. Cette approche produit des résultats de pointe en terme de modèles génératifs qui favorisent les réseaux significativement plus profonds. Elle permet aussi une inférence approximative amérliorée par plusieurs ordres de grandeur. De plus, nous introduisons un modèle génératif profond basé sur les modèles BiHM pour l'entraînement semi-supervisé.
Resumo:
Les modèles sur réseau comme ceux de la percolation, d’Ising et de Potts servent à décrire les transitions de phase en deux dimensions. La recherche de leur solution analytique passe par le calcul de la fonction de partition et la diagonalisation de matrices de transfert. Au point critique, ces modèles statistiques bidimensionnels sont invariants sous les transformations conformes et la construction de théories des champs conformes rationnelles, limites continues des modèles statistiques, permet un calcul de la fonction de partition au point critique. Plusieurs chercheurs pensent cependant que le paradigme des théories des champs conformes rationnelles peut être élargi pour inclure les modèles statistiques avec des matrices de transfert non diagonalisables. Ces modèles seraient alors décrits, dans la limite d’échelle, par des théories des champs logarithmiques et les représentations de l’algèbre de Virasoro intervenant dans la description des observables physiques seraient indécomposables. La matrice de transfert de boucles D_N(λ, u), un élément de l’algèbre de Temperley- Lieb, se manifeste dans les théories physiques à l’aide des représentations de connectivités ρ (link modules). L’espace vectoriel sur lequel agit cette représentation se décompose en secteurs étiquetés par un paramètre physique, le nombre d de défauts. L’action de cette représentation ne peut que diminuer ce nombre ou le laisser constant. La thèse est consacrée à l’identification de la structure de Jordan de D_N(λ, u) dans ces représentations. Le paramètre β = 2 cos λ = −(q + 1/q) fixe la théorie : β = 1 pour la percolation et √2 pour le modèle d’Ising, par exemple. Sur la géométrie du ruban, nous montrons que D_N(λ, u) possède les mêmes blocs de Jordan que F_N, son plus haut coefficient de Fourier. Nous étudions la non diagonalisabilité de F_N à l’aide des divergences de certaines composantes de ses vecteurs propres, qui apparaissent aux valeurs critiques de λ. Nous prouvons dans ρ(D_N(λ, u)) l’existence de cellules de Jordan intersectorielles, de rang 2 et couplant des secteurs d, d′ lorsque certaines contraintes sur λ, d, d′ et N sont satisfaites. Pour le modèle de polymères denses critique (β = 0) sur le ruban, les valeurs propres de ρ(D_N(λ, u)) étaient connues, mais les dégénérescences conjecturées. En construisant un isomorphisme entre les modules de connectivités et un sous-espace des modules de spins du modèle XXZ en q = i, nous prouvons cette conjecture. Nous montrons aussi que la restriction de l’hamiltonien de boucles à un secteur donné est diagonalisable et trouvons la forme de Jordan exacte de l’hamiltonien XX, non triviale pour N pair seulement. Enfin nous étudions la structure de Jordan de la matrice de transfert T_N(λ, ν) pour des conditions aux frontières périodiques. La matrice T_N(λ, ν) a des blocs de Jordan intrasectoriels et intersectoriels lorsque λ = πa/b, et a, b ∈ Z×. L’approche par F_N admet une généralisation qui permet de diagnostiquer des cellules intersectorielles dont le rang excède 2 dans certains cas et peut croître indéfiniment avec N. Pour les blocs de Jordan intrasectoriels, nous montrons que les représentations de connectivités sur le cylindre et celles du modèle XXZ sont isomorphes sauf pour certaines valeurs précises de q et du paramètre de torsion v. En utilisant le comportement de la transformation i_N^d dans un voisinage des valeurs critiques (q_c, v_c), nous construisons explicitement des vecteurs généralisés de Jordan de rang 2 et discutons l’existence de blocs de Jordan intrasectoriels de plus haut rang.
Resumo:
Dans le présent article, nous décrivons les trois façons d’organiser la participation publique à l’échelle municipale au Québec. D’une part, le modèle de participation préconisé par la Loi sur l’aménagement et l’urbanisme (LAU) domine l’ensemble des municipalités du Québec. D’autre part, jusqu’en 2002, les deux plus grandes villes de la province, Montréal et Québec, n’étaient pas soumises aux principes de la LAU. Elles ont ainsi développé des dispositifs participatifs originaux : les audiences publiques et les conseils de quartier. À partir des écrits de Fung (2006 et 2003), nous établissons une grille d’analyse qui définit six facteurs relatifs à l’espace participatif et décrivons par la suite les trois modèles de participation publique municipale au Québec. Nous constatons finalement que les regroupements municipaux ont amené une confrontation entre le modèle dominant de participation publique à l’échelle municipale et les modèles de Québec et de Montréal.
Resumo:
La fusariose de l’épi est une maladie fongique des cultures céréalières au Québec. Les objectifs de ce projet étaient de vérifier l’influence de quatre facteurs (météorologie, cultivar, date de semis, fongicide) sur les rendements et la qualité du blé et d’évaluer les performances de neuf modèles à prédire l’incidence de cette maladie. Pendant deux ans, à quatre sites expérimentaux au Québec, des essais de blé de printemps et d’automne ont été implantés pour amasser un jeu de données météorologiques, phénologiques et épidémiologiques. L’application d’un fongicide a réduit la teneur en désoxynivalénol des grains dans neuf essais sur douze et a augmenté les rendements dans sept essais. De plus, les modèles prévisionnels américains et argentins ont eu de meilleures performances que les modèles canadiens et italiens quand leur seuil de décision était ajusté et que le développement du blé était suivi au champ.
Resumo:
Introduction: En 2015, 65 pays avaient des programmes de vaccination contre les VPH. La modélisation mathématique a joué un rôle crucial dans leur implantation. Objectifs: Nous avons réalisé une revue systématique et analysé les prédictions de modèles mathématiques de l’efficacité populationnelle de la vaccination sur la prévalence des VPH-16/18/6/11 chez les femmes et les hommes, afin d’évaluer la robustesse/variabilité des prédictions concernant l’immunité de groupe, le bénéfice ajouté par la vaccination des garçons et l’élimination potentielle des VPH-16/18/6/11. Méthodes: Nous avons cherché dans Medline/Embase afin d’identifier les modèles dynamiques simulant l’impact populationnel de la vaccination sur les infections par les VPH-16/18/6/11 chez les femmes et les hommes. Les équipes participantes ont réalisé des prédictions pour 19 simulations standardisées. Nous avons calculé la réduction relative de la prévalence (RRprev) 70 ans après l’introduction de la vaccination. Les résultats présentés correspondent à la médiane(10ème;90èmeperccentiles) des prédictions. Les cibles de la vaccination étaient les filles seulement ou les filles & garçons. Résultats: 16/19 équipes éligibles ont transmis leurs prédictions. Lorsque 40% des filles sont vaccinées, la RRprev du VPH-16 est 53%(46%;68%) chez les femmes et 36%(28%;61%) chez les hommes. Lorsque 80% des filles sont vaccinées, la RRprev est 93%(90%;100%) chez les femmes et 83%(75%;100%) chez les hommes. Vacciner aussi les garçons augmente la RRprev de 18%(13%;32%) chez les femmes et 35%(27%;39%) chez les hommes à 40% de couverture, et 7%(0%;10%) et 16%(1%;25%) à 80% de couverture. Les RRprev étaient plus élevées pour les VPH-18/6/11 (vs. VPH-16). Si 80% des filles & garçons sont vaccinés, les VPH-16/18/6/11 pourraient être éliminés. Interprétation: Même si les modèles diffèrent entre eux, les prédictions s’accordent sur: 1)immunité de groupe élevée même à basse couverture, 2)RRprev supérieures pour les VPH-18/6/11 (vs. VPH-16), 3)augmenter la couverture chez les filles a un meilleur impact qu’ajouter les garçons, 4)vacciner 80% des filles & garçons pourraient éliminer les VPH-16/18/6/11.
Resumo:
[…] Le but de la présente étude consiste à rechercher des manifestations empiriques qui rendent compte d'une relation entre des modèles éducationnels différents et des séries d'activités d'apprentissage. Pour réaliser cet objectif, il importe dans une première étape, d'expliciter les différents modèles éducationnels retenus et qui peuvent être des facteurs d'orientations ou d'influences des activités d'apprentissage au niveau universitaire. Ensuite, on précisera comment s'effectue la sélection des activités d'apprentissage qui sont supposées être engendrées par ces modèles éducationnels. Une troisième étape servira à expliciter la méthode utilisée pour recueillir de l’information sur les modèles éducationnels et les activités d'apprentissage. La fin de ce chapitre annoncera les hypothèses de la recherche. [...]