983 resultados para lens imaging principle
Resumo:
Magnetic Resonance Imaging was used to study changes in the crystalline lens and ciliary body with accommodation and aging. Monocular images were obtained in 15 young (19-29 years) and 15 older (60-70 years) emmetropes when viewing at far (6m) and at individual near points (14.5 to 20.9 cm) in the younger group. With accommodation, lens thickness increased (mean±95% CI: 0.33±0.06mm) by a similar magnitude to the decrease in anterior chamber depth (0.31±0.07mm) and equatorial diameter (0.32±0.04mm) with a decrease in the radius of curvature of the posterior lens surface (0.58±0.30mm). Anterior lens surface shape could not be determined due to the overlapping region with the iris. Ciliary ring diameter decreased (0.44±0.17mm) with no decrease in circumlental space or forward ciliary body movement. With aging, lens thickness increased (mean±95% CI: 0.97±0.24mm) similar in magnitude to the sum of the decrease in anterior chamber depth (0.45±0.21mm) and increase in anterior segment depth (0.52±0.23mm). Equatorial lens diameter increased (0.28±0.23mm) with no change in the posterior lens surface radius of curvature. Ciliary ring diameter decreased (0.57±0.41mm) with reduced circumlental space (0.43±0.15mm) and no forward ciliary body movement. Accommodative changes support the Helmholtz theory of accommodation including an increase in posterior lens surface curvature. Certain aspects of aging changes mimic accommodation.
Resumo:
Purpose. The purpose of this article was to present methods capable of estimating the size and shape of the human eye lens without resorting to phakometry or magnetic resonance imaging (MRI). Methods. Previously published biometry and phakometry data of 66 emmetropic eyes of 66 subjects (age range [18, 63] years, spherical equivalent range [−0.75, +0.75] D) were used to define multiple linear regressions for the radii of curvature and thickness of the lens, from which the lens refractive index could be derived. MRI biometry was also available for a subset of 30 subjects, from which regressions could be determined for the vertex radii of curvature, conic constants, equatorial diameter, volume, and surface area. All regressions were compared with the phakometry and MRI data; the radii of curvature regressions were also compared with a method proposed by Bennett and Royston et al. Results. The regressions were in good agreement with the original measurements. This was especially the case for the regressions of lens thickness, volume, and surface area, which each had an R2 > 0.6. The regression for the posterior radius of curvature had an R2 < 0.2, making this regression unreliable. For all other regressions we found 0.25 < R2 < 0.6. The Bennett-Royston method also produced a good estimation of the radii of curvature, provided its parameters were adjusted appropriately. Conclusions. The regressions presented in this article offer a valuable alternative in case no measured lens biometry values are available; however care must be taken for possible outliers.
Resumo:
The formation of an internal barrier to the diffusion of small molecules in the lens during middle age is hypothesized to be a key event in the development of age-related nuclear (ARN) cataract. Changes in membrane lipids with age may be responsible. In this study, we investigated the effect of age on the distribution of sphingomyelins, the most abundant lens phospholipids. Human lens sections were initially analyzed by MALDI mass spectrometry imaging. A distinct annular distribution of the dihydrosphingomyelin, DHSM (d18:0/16:0), in the barrier region was observed in 64- and 70-year-old lenses but not in a 23-year-old lens. An increase in the dihydroceramide, DHCer (d18:0/16:0), in the lens nucleus was also observed in the older lenses. These findings were supported by ESI mass spectrometry analysis of lipid extracts from lenses dissected into outer, barrier, and nuclear regions. A subsequent analysis of 18 lenses ages 20-72 years revealed that sphingomyelin levels increased with age in the barrier region until reaching a plateau at approximately 40 years of age. Such changes in lipid composition will have a significant impact on the physical properties of the fiber cell membranes and may be associated with the formation of a barrier.-Deeley, J. M., J. A. Hankin, M. G. Friedrich, R. C. Murphy, R. J. W. Truscott, T. W. Mitchell, and S. J. Blanksby. Sphingolipid distribution changes with age in the human lens. J. Lipid Res. 2010. 51: 2753-2760.
Resumo:
Purpose To examine the influence of short-term miniscleral contact lens wear on corneal shape, thickness and anterior surface aberrations. Methods Scheimpflug imaging was captured before, immediately following and 3 hours after a short period (3 hours) of miniscleral contact lens wear for 10 young (mean 27 ± 5 years), healthy participants. Natural diurnal variations were considered by measuring baseline diurnal changes obtained on a separate control day without contact lens wear. Results Small but significant anterior corneal flattening was observed immediately following lens removal (overall mean 0.02 ± 0.03 mm, p < 0.001) which returned to baseline levels three hours after lens removal. During the three hour recovery period significant corneal thinning (-13.4 ± 10.5 μm) and posterior surface flattening (0.03 ± 0.02 mm) were also observed (both p < 0.01). The magnitude of posterior corneal flattening during recovery correlated with the amount of corneal thinning (r = 0.69, p = 0.03). Central corneal clearance (maximum tear reservoir depth) was not associated with corneal swelling following lens removal (r = -0.24, p > 0.05). An increase in lower-order corneal astigmatism Z(2,2) was also observed following lens wear (mean -0.144 ± 0.075 μm, p = 0.02). Conclusions Flattening of the anterior corneal surface was observed immediately following lens wear, while ‘rebound’ thinning and flattening of the posterior surface was evident following the recovery period. Modern miniscleral contact lenses that vault the cornea may slightly influence corneal shape and power but do not induce clinically significant corneal oedema during short-term wear.
Resumo:
Purpose Transient changes in corneal topography associated with soft and conventional or reverse geometry rigid contact lens wear have been well documented; however, only a few studies have examined the influence of scleral contact lens wear upon the cornea. Therefore, in this study, we examined the influence of modern miniscleral contact lenses, which land entirely on the sclera and overlying tissues, upon anterior corneal curvature and optics. Methods Anterior corneal topography and elevation data were acquired using Scheimpflug imaging (Pentacam HR, Oculus) immediately prior to and following 8 hours of miniscleral contact lens wear in 15 young healthy adults (mean age 22 ± 3 years, 8 East Asian, 7 Caucasian) with normal corneae. Corneal diurnal variations were accounted for using data collected on a dedicated measurement day without contact lens wear. Corneal clearance was quantified using an optical coherence tomographer (RS-3000, Nidek) following lens insertion and after 8 hours of lens wear. Results Although corneal clearance was maintained throughout the 8 hour lens wear period, significant corneal flattening (up to 0.08 ± 0.04 mm) was observed, primarily in the superior mid-peripheral cornea, which resulted in a slight increase in against-the-rule corneal astigmatism (mean +0.02/-0.15 x 94 for an 8 mm diameter). Higher order aberration terms of horizontal coma, vertical coma and spherical aberration all underwent significant changes for an 8 mm corneal diameter (p ≤ 0.01), which typically resulted in a decrease in RMS error values (mean change in total higher order RMS -0.035 ± 0.046 µm for an 8 mm diameter). There was no association between the magnitude of change in central or mid-peripheral corneal clearance during lens wear and the observed changes in corneal curvature (p > 0.05). However, Asian participants displayed a significantly greater reduction in corneal clearance (p = 0.04) and greater superior-nasal corneal flattening compared to Caucasians (p = 0.048). Conclusions Miniscleral contact lenses that vault the cornea induce significant changes in anterior corneal surface topography and higher order aberrations following 8 hours of lens wear. The region of greatest corneal flattening was observed in the superior-nasal mid-periphery, more so in Asian participants. Practitioners should be aware that corneal measurements obtained following miniscleral lens removal may mask underlying corneal steepening.
Resumo:
- Purpose To examine the change in corneal thickness and posterior curvature following 8 hours of miniscleral contact lens wear. - Methods Scheimpflug imaging (Pentacam HR, Oculus) was captured before, and immediately following, 8 hours of miniscleral contact lens wear for 15 young (mean age 22 ± 3 years), healthy participants with normal corneae. Natural diurnal variations were considered by measuring baseline corneal changes obtained on a separate control day without contact lens wear. - Results Over the central 6 mm of the cornea, a small, but highly statistically significant amount of edema was observed following 8 hours of miniscleral lens wear, after accounting for normal diurnal fluctuations (mean ± standard deviation percentage swelling 1.70 ± 0.98%, p < 0.0001). Posterior corneal topography remained stable following lens wear (-0.01 ± 0.07 mm steepening over the central 6 mm, p = 0.60). The magnitude of posterior corneal topographical changes following lens wear did not correlate with the extent of lens-related corneal edema (r = -0.16, p = 0.57). Similarly, the initial central corneal vault (maximum post-lens tear layer depth) was not associated with corneal swelling following lens removal (r = 0.27, p = 0.33). - Conclusions While a small amount of corneal swelling was induced following 8 hours of miniscleral lens wear (on average <2%), modern high Dk miniscleral contact lenses that vault the cornea do not induce clinically significant corneal edema or hypoxic related posterior corneal curvature changes during short-term wear. Longer-term studies of compromised eyes (e.g. corneal ectasia) are still required to inform the optimum lens and fitting characteristics for safe scleral lens wear to minimize corneal hypoxia.
Resumo:
Purpose: To compare lens dimensions and refractive index distributions in type 1 diabetes and age-matched control groups. Methods: There were 17 participants with type 1 diabetes, consisting of two subgroups (7 young [23 ± 4 years] and 10 older [54 ± 4 years] participants), with 23 controls (13 young, 24 ± 4 years; 10 older, 55 ± 4 years). For each participant, one eye was tested with relaxed accommodation. A 3T clinical magnetic resonance imaging scanner was used to image the eye, employing a multiple spin echo (MSE) sequence to determine lens dimensions and refractive index profiles along the equatorial and axial directions. Results: The diabetes group had significantly smaller lens equatorial diameters and larger lens axial thicknesses than the control group (diameter mean ± 95% confidence interval [CI]: diabetes group 8.65 ± 0.26 mm, control group 9.42 ± 0.18 mm; axial thickness: diabetes group 4.33 ± 0.30 mm, control group 3.80 ± 0.14 mm). These differences were also significant within each age group. The older group had significantly greater axial thickness than the young group (older group 4.35 ± 0.26 mm, young group 3.70 ± 0.25 mm). Center refractive indices of diabetes and control groups were not significantly different. There were some statistically significant differences between the refractive index fitting parameters of young and older groups, but not between diabetes and control groups of the same age. Conclusions: Smaller lens diameters occurred in the diabetes groups than in the age-matched control groups. Differences in refractive index distribution between persons with and without diabetes are too small to have important effects on instruments measuring axial thickness.
Resumo:
Non-invasive measurements of the age dependence of refractive index distribution in human eye lenses in vitro using a novel X-ray Talbot Interferometry method. In their paper, the authors make frequent reference to our own work in which we employed magnetic resonance imaging (MRI) to make similar non-invasive measurements of the refractive index distribution in the human eye lens [2, 3]. Prior to the current work, ours was the only method for making such measurements both non-invasively and without prior assumptions about the shape of the refractive index distribution. For this reason, the latest work is to be welcomed. However at several points in the paper, Pierscionek et al. [1] make statements about our technique which are factually incorrect...
Resumo:
The use of split lenses for multiple imaging and multichannel optical processing is demonstrated. Conditions are obtained for nonoverlapping of multipled images and avoiding crosstalk in the multichannel processing. Almost uniform intensity across the multipled images is an advantage here, while the low ƒ/No. of the split lens segments puts a limit in the resolution in image processing. Experimental results of multiple imaging and of a few multichannel processing are presented.
Resumo:
We present an explicit computable integral solution of the electric field generated at the focal region of a cylindrical lens. This representation is based on vectorial diffraction theory and further enables the computation of the system point spread function of a cylindrical lens. It is assumed that there is no back-scattering and the contribution from the evanescent field is negligible. Stationary phase approximation along with the Fresnel transmission coefficients are employed for evaluating the polarization dependent electric field components. Studies were carried out to determine the polarization effects and to calculate the system resolution. The effect of s -, p - and randomly polarized light is studied on the fixed sample (electric dipole is fixed in space). Proposed approach allows better understanding of electric field effects at the focus of a cylindrical aplanatic system. This opens up future developments in the field of fluorescence microscopy and optical imaging. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
We provide experimental evidence supporting the vectorial theory for determining electric field at and near the geometrical focus of a cylindrical lens. This theory provides precise distribution of field and its polarization effects. Experimental results show a close match (approximate to 95% using (2)-test) with the simulation results (obtained using vectorial theory). Light-sheet generated both at low and high NA cylindrical lens shows the importance of vectorial theory for further development of light-sheet techniques. Potential applications are in planar imaging systems (such as, SPIM, IML-SPIM, imaging cytometry) and spectroscopy. Microsc. Res. Tech. 77:105-109, 2014. (c) 2014 Wiley Periodicals, Inc.
Resumo:
We demonstrate a new technique to generate multiple light-sheets for fluorescence microscopy. This is possible by illuminating the cylindrical lens using multiple copies of Gaussian beams. A diffraction grating placed just before the cylindrical lens splits the incident Gaussian beam into multiple beams traveling at different angles. Subsequently, this gives rise to diffraction-limited light-sheets after the Gaussian beams pass through the combined cylindrical lens-objective sub-system. Direct measurement of field at and around the focus of objective lens shows multi-sheet pattern with an average thickness of 7.5 mu m and inter-sheet separation of 380 mu m. Employing an independent orthogonal detection sub-system, we successfully imaged fluorescently-coated yeast cells (approximate to 4 mu m) encaged in agarose gel-matrix. Such a diffraction-limited sheet-pattern equipped with dedicated detection system may find immediate applications in the field of optical microscopy and fluorescence imaging. (C) 2015 Optical Society of America
Resumo:
Atomic force Microscopy (AFM) has become a versatile tool in biology due to its advantage of high-resolution imaging of biological samples close to their native condition. Apart from imaging, AFM can also measure the local mechanical properties of the surfaces. In this study, we explore the possibility of using AFM to quantify the rough eye phenotype of Drosophila melanogaster through mechanical properties. We have measured adhesion force, stiffness and elastic modulus of the corneal lens using AFM. Various parameters affecting these measurements like cantilever stiffness and tip geometry are systematically studied and the measurement procedures are standardized. Results show that the mean adhesion force of the ommatidial surface varies from 36 nN to 16 nN based on the location. The mean stiffness is 483 +/- 5 N/m, and the elastic modulus is 3.4 +/- 0.05 GPa (95% confidence level) at the center of ommatidia. These properties are found to be different in corneal lens of eye expressing human mutant tau gene (mutant). The adhesion force, stiffness and elastic modulus are decreased in the mutant. We conclude that the measurement of surface and mechanical properties of D. melanogaster using AFM can be used for quantitative evaluation of `rough eye' surface. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We propose clean localization microscopy (a variant of fPALM) using a molecule filtering technique. Localization imaging involves acquiring a large number of images containing single molecule signatures followed by one-to-one mapping to render a super-resolution image. In principle, this process can be repeated for other z-planes to construct a 3D image. But, single molecules observed from off-focal planes result in false representation of their presence in the focal plane, resulting in incorrect quantification and analysis. We overcome this with a single molecule filtering technique that imposes constraints on the diffraction limited spot size of single molecules in the image plane. Calibration with sub-diffraction size beads puts a natural cutoff on the actual diffraction-limited size of single molecules in the focal plane. This helps in distinguishing beads present in the focal plane from those in the off-focal planes thereby providing an estimate of the single molecules in the focal plane. We study the distribution of actin (labeled with a photoactivatable CAGE 552 dye) in NIH 3T3 mouse fibroblast cells. (C) 2016 Author(s).
Resumo:
In order to monitor multiple protein reaction processes simultaneously, a biosensor based on imaging ellipsometry operated in the total internal reflection mode is proposed. It could be realised as an automatic analysis for protein interaction processes with real-time label-free method. Its principle and methodology as well as a demonstration for its applications are presented.