992 resultados para leaf area index (LAI)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a method that employs Earth Observation (EO) data to calculate spatiotemporal estimates of soil heat flux, G, using a physically-based method (the Analytical Method). The method involves a harmonic analysis of land surface temperature (LST) data. It also requires an estimate of near-surface soil thermal inertia; this property depends on soil textural composition and varies as a function of soil moisture content. The EO data needed to drive the model equations, and the ground-based data required to provide verification of the method, were obtained over the Fakara domain within the African Monsoon Multidisciplinary Analysis (AMMA) program. LST estimates (3 km × 3 km, one image 15 min−1) were derived from MSG-SEVIRI data. Soil moisture estimates were obtained from ENVISAT-ASAR data, while estimates of leaf area index, LAI, (to calculate the effect of the canopy on G, largely due to radiation extinction) were obtained from SPOT-HRV images. The variation of these variables over the Fakara domain, and implications for values of G derived from them, were discussed. Results showed that this method provides reliable large-scale spatiotemporal estimates of G. Variations in G could largely be explained by the variability in the model input variables. Furthermore, it was shown that this method is relatively insensitive to model parameters related to the vegetation or soil texture. However, the strong sensitivity of thermal inertia to soil moisture content at low values of relative saturation (<0.2) means that in arid or semi-arid climates accurate estimates of surface soil moisture content are of utmost importance, if reliable estimates of G are to be obtained. This method has the potential to improve large-scale evaporation estimates, to aid land surface model prediction and to advance research that aims to explain failure in energy balance closure of meteorological field studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a model-data fusion (MDF) inter-comparison project (REFLEX), which compared various algorithms for estimating carbon (C) model parameters consistent with both measured carbon fluxes and states and a simple C model. Participants were provided with the model and with both synthetic net ecosystem exchange (NEE) of CO2 and leaf area index (LAI) data, generated from the model with added noise, and observed NEE and LAI data from two eddy covariance sites. Participants endeavoured to estimate model parameters and states consistent with the model for all cases over the two years for which data were provided, and generate predictions for one additional year without observations. Nine participants contributed results using Metropolis algorithms, Kalman filters and a genetic algorithm. For the synthetic data case, parameter estimates compared well with the true values. The results of the analyses indicated that parameters linked directly to gross primary production (GPP) and ecosystem respiration, such as those related to foliage allocation and turnover, or temperature sensitivity of heterotrophic respiration, were best constrained and characterised. Poorly estimated parameters were those related to the allocation to and turnover of fine root/wood pools. Estimates of confidence intervals varied among algorithms, but several algorithms successfully located the true values of annual fluxes from synthetic experiments within relatively narrow 90% confidence intervals, achieving >80% success rate and mean NEE confidence intervals <110 gC m−2 year−1 for the synthetic case. Annual C flux estimates generated by participants generally agreed with gap-filling approaches using half-hourly data. The estimation of ecosystem respiration and GPP through MDF agreed well with outputs from partitioning studies using half-hourly data. Confidence limits on annual NEE increased by an average of 88% in the prediction year compared to the previous year, when data were available. Confidence intervals on annual NEE increased by 30% when observed data were used instead of synthetic data, reflecting and quantifying the addition of model error. Finally, our analyses indicated that incorporating additional constraints, using data on C pools (wood, soil and fine roots) would help to reduce uncertainties for model parameters poorly served by eddy covariance data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a water balance modelling framework, this paper analyses the effects of urban design on the water balance, with a focus on evapotranspiration and storm water. First, two quite different urban water balance models are compared: Aquacycle which has been calibrated for a suburban catchment in Canberra, Australia, and the single-source urban evapotranspiration-interception scheme (SUES), an energy-based approach with a biophysically advanced representation of interception and evapotranspiration. A fair agreement between the two modelled estimates of evapotranspiration was significantly improved by allowing the vegetation cover (leaf area index, LAI) to vary seasonally, demonstrating the potential of SUES to quantify the links between water sensitive urban design and microclimates and the advantage of comparing the two modelling approaches. The comparison also revealed where improvements to SUES are needed, chiefly through improved estimates of vegetation cover dynamics as input to SUES, and more rigorous parameterization of the surface resistance equations using local-scale suburban flux measurements. Second, Aquacycle is used to identify the impact of an array of water sensitive urban design features on the water balance terms. This analysis confirms the potential to passively control urban microclimate by suburban design features that maximize evapotranspiration, such as vegetated roofs. The subsequent effects on daily maximum air temperatures are estimated using an atmospheric boundary layer budget. Potential energy savings of about 2% in summer cooling are estimated from this analysis. This is a clear ‘return on investment’ of using water to maintain urban greenspace, whether as parks distributed throughout an urban area or individual gardens or vegetated roofs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Upscaling ecological information to larger scales in space and downscaling remote sensing observations or model simulations to finer scales remain grand challenges in Earth system science. Downscaling often involves inferring subgrid information from coarse-scale data, and such ill-posed problems are classically addressed using regularization. Here, we apply two-dimensional Tikhonov Regularization (2DTR) to simulate subgrid surface patterns for ecological applications. Specifically, we test the ability of 2DTR to simulate the spatial statistics of high-resolution (4 m) remote sensing observations of the normalized difference vegetation index (NDVI) in a tundra landscape. We find that the 2DTR approach as applied here can capture the major mode of spatial variability of the high-resolution information, but not multiple modes of spatial variability, and that the Lagrange multiplier (γ) used to impose the condition of smoothness across space is related to the range of the experimental semivariogram. We used observed and 2DTR-simulated maps of NDVI to estimate landscape-level leaf area index (LAI) and gross primary productivity (GPP). NDVI maps simulated using a γ value that approximates the range of observed NDVI result in a landscape-level GPP estimate that differs by ca 2% from those created using observed NDVI. Following findings that GPP per unit LAI is lower near vegetation patch edges, we simulated vegetation patch edges using multiple approaches and found that simulated GPP declined by up to 12% as a result. 2DTR can generate random landscapes rapidly and can be applied to disaggregate ecological information and compare of spatial observations against simulated landscapes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foi estudada a possibilidade de redução nas doses recomendadas de herbicidas, isolados ou em misturas, sem afetar algumas características das plantas de soja (Santa Rosa), tais como o acúmulo total de matéria secada parte aérea (caule + ramos, folhas e vagens), índice de Area Foliar (IAF) e teores de macro e micronutrientes (Diagnose Foliar e nos grãos). O experimento foi ins talado em Solo Latos - sol Vermelho Escuro - fase arenosa, município de Jaboticabal, Estado de São Paulo, Brasil. O delineamento experimental foi o de blocos ao acaso, em vinte tratamentos e três repetições, te stando-se a dose total recomendad a e reduções de 25% e 50% de la , para o trifluralin, alachlor e metribuzin, isolados e em misturas. As doses recomendadas foram 0,86; 1,72 e 0,28 kg/ha de trifluralin, alachlor e metribuzin, respectivamente. As 'misturas com doses reduzidas, de tri - fluralin + metribuzin (0 ,6 5 + 0, 21 kg/h a) e alachlor + metribuzin (1 ,4 4 + 0, 21 kg /h a), apresentaram controle geral das plantas daninhas acima de 90% at é o 60 .° dia após a semeadura, sem apresentar fitotoxicida de ou efeitos deletérios nas plantas de soja. Além disso apresenta ram os melhores resultados relativos ao acúmulo de matéria seca na parte aérea, juntamente com as mesmas misturas nas doses padrões e testemunha capinada. A absorção de nutrientes também sempre foi maior nestes tratamentos , com maiores teores nas folhas, na matéria seca geral e nos grãos. O IAF alto e a sua manutenção por um período maior, nestes tratamentos, podem ter tido influência decisiva, com maior eficiência fotossintética das plantas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pesquisa foi instalada no Setor de Forragicultura da FCAV/UNESP-Jaboticabal, para avaliar o híbrido de sorgo-sudão AG 2501C no outono e inverno. O manejo da pastagem foi conduzido, simulando o sistema de lotação intermitente. O experimento foi desenvolvido de março a setembro de 2002. A forrageira foi submetida a nove tratamentos: três doses de N (100, 200 e 300 kg/ha) e três doses de K (0, 80 e 160 kg/ha de K2O), em delineamento experimental de blocos casualizados com três repetições em esquema de parcelas subdivididas. As características estudadas foram massas, secas, inicial de planta inteira, folha e colmo e massa seca residual; relação lâmina/colmo; índice de área foliar (IAF); interceptação da radiação fotossinteticamente ativa (RFA) e coeficiente de extinção luminosa. Os tratamentos não influenciaram a massa seca inicial (MSI) e residual (MSR) da planta inteira, folha e colmo e massa seca residual. Os resultados médios para MSI, MSR, folha e colmo foram 2801,2; 964,7; 1462,8 e 1085,2 kg/ha de MS, por ciclo de pastejo, respectivamente. Houve redução da relação lâmina/colmo e da porcentagem de folhas, enquanto a porcentagem de colmos aumentou. Houve interação entre N e K para IAF, interceptação de luz e coeficiente de extinção.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The radiation budget in agricultural crops is very important on the microclimate characterization, on the water losses determination and on dry matter accumulation of vegetation. This work describes the radiation budget determination in a green beans crop (Phaseolus vulgaris L.), in Botucatu, SP, Brazil (22° 54′S; 48° 27′W; 850 m), under two different conditions: the normal field culture and in a polyethylene greenhouse. The densities of fluxes of radiation were used to construct diurnal curves of the components of global radiation (Rg), reflected radiation (Rr), net radiation (Rn).The arithmetic's relations allowed to obtain the components net short-waves (Rc) and net long-waves (Rl). The analysis of these components related to the leaf area index (LAI) in many phenological phases of the culture showed Rg distributed in 68%, 85%, 17% and 66%, 76%, 10% to Rn, Rc and Rl in the internal and external ambients in a polyethylene greenhouse, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate Eucaliptus grandis genotypes (Clones 105 and 433) in relation to drought tolerance, through growth plant analysis. Black PVC pots with 10 liter volume were used for cultivate plants in polyethilene greenhouse oriented east/west. Completely randonmized design with four treatments was used: two clones and two minimum soil water potentials (- 0.03 and -1,5 MPa) and sixteen replicates. Pots were weighed daily in order to evaluate water content and characteristic soli water curve was determined. Plant development was obtained each 15 days from planting until 60 days through total dry matter (DM), leaf area index (LAI), leaf area ratio (LAR), net assimilative ratio (NAR), specific leaf area (SLA), relative growth ratio (RGR) and absolute growth ratio (AGR). Results showed that clone 105 presented less sensibility to water deficit, which qualify it as genetic material for use under dry soil conditons. On the other hand, both clones had similar behavior with no water restrictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth analysis allows the characterization and understanding of the upland rice cultivars development. This study aimed at characterizing, by using the growth analysis, the physiological components and agronomic performance, as well as the differences among traditional, intermediate and modern upland rice cultivars. The experiment was conducted under upland rice conditions, favored by the use of supplementary irrigation. The experimental design was randomized blocks, with three treatments consisting of traditional (Caiapó), modern (Maravilha) and intermediate (BRS Primavera) cultivars and eight replications. The leaf area index (LAI), instantaneous growth rate (IGR), relative growth rate (RGR), net assimilation rate (NAR) and specific leaf area (SLA), as well as grain yield and yield components, were evaluated. The intermediate and traditional cultivars presented the highest total dry matter accumulation rate, while the traditional and modern ones showed the highest LAI. The intermediate cultivar presented the highest IGR, RGR, NAR and SLA levels, as well as the highest grain yield, as a consequence of the higher spikelet fertility and 1,000 grain mass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)