917 resultados para lattice parameters
Resumo:
The temperature dependence of the crystalline structure and the lattice parameters of Pb1-xLaxZr0.40Ti0.60O3 ferroelectric ceramic system with 0.00 x 0.21 was determined. The samples with x 0.11 show a cubic-to-tetragonal phase transition at the maximum dielectric permittivity, Tmax. Above this amount and especially for the x = 0.12 sample, a spontaneous phase transition from a relaxor ferroelectric state (cubic phase) to a ferroelectric state (tetragonal phase) is observed upon cooling below the Tmax. Unlike what has been reported in other studies, the x = 0.13, 0.14, and 0.15 samples, which present a more pronounced relaxor behavior, also presents a spontaneous normal-to-relaxor transition, indicated by a cubic to tetragonal symmetry below the Tmax. The origin of this anomaly has been associated with an increase in the degree of tetragonality, confirmed by the measurements of the X-ray diffraction patterns. The differential thermal analysis (DSC) measurements also confirm the existence of these phase transitions.
Resumo:
The Tungsten/copper composites are commonly used for electrical and thermal objectives like heat sinks and lectrical conductors, propitiating an excellent thermal and electrical conductivity. These properties are dependents of the composition, crystallite size and production process. The high energy milling of the powder of W-Cu produces an dispersion high and homogenization levels with crystallite size of W very small in the ductile Cu phase. This work discusses the effect of the HEM in preparation of the W-25Cu composite powders. Three techniques of powder preparation were utilized: milling the dry with powder of thick Cu, milling the dry with powder of fine Cu and milling the wet with powder of thick Cu. The form, size and composition of the particles of the powders milled were observed by scanning electron microscopy (SEM). The X-ray diffraction (XRD) was used to analyse the phases, lattice parameters, size and microstrain of the crystallite. The analyse of the crystalline structure of the W-25Cu powders milled made by Rietveld Method suggests the partial solid solubility of the constituent elements of the Cu in lattice of the W. This analyse shows too that the HEM produces the reduction high on the crystallite size and the increase in the lattice strain of both phases, this is more intense in the phase W
Resumo:
In this study, binary perovskite (BaCexO3) were doped with praseodymium (Pr) to obtainment of the ternary material BaCexPr1-xO3. This material was synthesized by the complexation method combining EDTA/Citrate with the stoichiometric ratio of the element Praseodymium ranging from x = 0.1 to x = 0.9 in order to determine the influence of this rare earth element on the morphology and microstructure of the final powder. At first the material was synthesized based on the route proposed by literature (Santos, 2010), and then characterized by SEM and XRD, besides being refined by the Rietveld method. In the material that had lowest residual parameter, S, and lowest average size of crystal, pH variation of synthesis solution was made in order to identify the influence of this parameter on the morphology and microscopy of the final powder. The results show that addition of praseodymium did not directly influence the crystallographic and lattice parameters, keeping even the same orthorhombic structure of the binary material BaCexO3, according to Yamanaka et al (2003). Material type BaCe0,2Pr0,8O3 had lowest residual parameter (S=1.4) and lowest average size of crystallite (26.4 nm), being used as reference in the pH variation of synthesis solution for 9, 7, 5 and 3, respectively. Variation of this parameter showed that when the synthesis solution pH was decreased to below 11, there was an increase in the average size of crystals, for pH 9, about 58.3%, for pH 7 (30.3 %), for pH 2 (2.3%) and for pH 3 (42%), indicating that the value initially used and quoted by Santos (2010) was the most coherent
Resumo:
The physical properties and the excitations spectrum in oxides and semiconductors materials are presented in this work, whose the first part presents a study on the confinement of optical phonons in artificial systems based on III-V nitrides, grown in periodic and quasiperiodic forms. The second part of this work describes the Ab initio calculations which were carried out to obtain the optoeletronic properties of Calcium Oxide (CaO) and Calcium Carbonate (CaCO3) crystals. For periodic and quasi-periodic superlattices, we present some dynamical properties related to confined optical phonons (bulk and surface), obtained through simple theories, such as the dielectric continuous model, and using techniques such as the transfer-matrix method. The localization character of confined optical phonon modes, the magnitude of the bands in the spectrum and the power laws of these structures are presented as functions of the generation number of sequence. The ab initio calculations have been carried out using the CASTEP software (Cambridge Total Sequential Energy Package), and they were based on ultrasoft-like pseudopotentials and Density Functional Theory (DFT). Two di®erent geometry optimizations have been e®ectuated for CaO crystals and CaCO3 polymorphs, according to LDA (local density approximation) and GGA (generalized gradient approximation) approaches, determining several properties, e. g. lattice parameters, bond length, electrons density, energy band structures, electrons density of states, e®ective masses and optical properties, such as dielectric constant, absorption, re°ectivity, conductivity and refractive index. Those results were employed to investigate the confinement of excitons in spherical Si@CaCO3 and CaCO3@SiO2 quantum dots and in calcium carbonate nanoparticles, and were also employed in investigations of the photoluminescence spectra of CaCO3 crystal
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The structural and electronic properties of bulk and both oxidized and reduced SnO2(110) surfaces as well as the adsorption process of O-2 on the reduced surface have been investigated by periodic DFT calculations at B3LYP level. The lattice parameters, charge distribution, density of states and band structure are reported for the bulk and surfaces. Surface relaxation effects have been explicitly taken into account by optimizing slab models of nine and seven atomic layers representing the oxidized and reduced surfaces, respectively. The conductivity behavior of the reduced SnO2(110) surface is explained by a distribution of the electrons in the electronic states in the band gap induced by oxygen vacancies. Three types of adsorption approaches of O-2 on the four-fold tin at the reduced SuO(2)(110) surface have been considered. The most exothermic channel corresponds to the adsorption of O-2 parallel to the surface and to the four-fold tin row, and it is believed to be associated with the formation of a peroxo O-2(2-) species. The chemisorption of O-2 on reduced SnO2(110) surface causes a significant depopulation of states along the band gap and it is shown to trap the electrons in the chemisorbed complex producing an electron-depleted space-charge layer in the inner surface region of the material in agreement with some experimental evidences. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Orthoferrites AFeO3 (A = rare earth) are an important class of perovskite oxides that exhibit weak ferromagnetism. These materials find numerous applications as chemical sensors, cathodes for fuel cells and catalysis, which make them interesting from the standpoint of science and technology. Their structural, electrical and magnetic properties are dependent on many factors such as the preparation method, heat treatment conditions, chemical composition and replacement of cations in sites A and/or B. In this paper, LaFe1-xMnxO3 (0 ≤ x ≤ 1) orthoferrites-type was prepared by Pechini method and Microwave-assisted combustion reaction in order to evaluate the influence of synthesis route on the formation of oxide, as well as the effect of parcial replacement of iron by manganese and heat treatment on the magnetic properties. The precursor powders were calcined at 700°C, 900°C, 1100°C and 1300°C for 4 hours and they were characterized by the techniques: Thermogravimetric analysis (TGA), X ray diffraction (XRD), Refinement by Rietveld method, Scanning electron microscopy (SEM), Reduction temperature programmed (RTP) and Magnetic hysteresis measurements performed at room temperature. According to the XRD patterns, the formation of perovskite phase with orthorhombic structure was observed for the systems where 0 ≤ x ≤ 0.5 and rhombohedral for x = 1. The results also showed a decrease of lattice parameters with the parcial replacement of iron by manganese and consequently a reduction in cell volume. The hysteresis curves exhibited weak ferromagnetism for the systems prepared by both synthesis methods. However, a dependence of magnetization as a function of dopant content was observed for samples produced by Pechini method. As for the systems prepared by combustion reaction, it was found that the secondary phases exert a strong influence on the magnetic behavior
Resumo:
The Layered Double Hydroxides has become extremely promising materials due to its range of applications, easily obtained in the laboratory and reusability after calcination, so the knowledge regarding their properties is of utmost importance. In this study were synthesized layered double hydroxides of two systems, Mg-Al and Zn-Al, and such materials were analyzed with X-ray diffraction and, from these data, we determined the volume density, planar atomic density, size crystallite, lattice parameters, interplanar spacing and interlayer space available. Such materials were also subjected to thermogravimetric analysis reasons for heating 5, 10, 20 and 25 ° C / min to determine kinetic parameters for the formation of metaphases HTD and HTB based on theoretical models Ozawa, Flynn-Wall Starink and Model Free Kinetics. In addition, the layered double hydroxides synthesized in this working ratios were calcined heating 2.5 ° C / min and 20 ° C / min, and tested for adsorption of nitrate anion in aqueous solution batch system at time intervals 5 min, 15 min, 30 min, 1h, 2h and 4h. Such calcined materials were also subjected to exposure to the atmosphere and at intervals of 1 week, 2 weeks and 1 month were analyzed by infrared spectroscopy to study the kinetics of regeneration determining structural called "memory effect"
Resumo:
The effects of silver insertion on the TiO(2) photocatalytic activity for the degradation of diclofenac potassium were reported here. Techniques such as X-ray diffraction, scanning electron microscopy and UV-Vis spectroscopy were used to comprehend the relation between structure and properties of the silver-modified TiO(2), thin films obtained by the sol-gel method. The lattice parameters and the crystallinity of TiO(2) anatase phase were affected by inserted silver, and the film thickness increased about 4 nm for each 1 wt.% of silver inserted. The degradation of diclofenac potassium and by-products reached an efficiency of 4.6 mg(C) W(-1) when the material was modified with silver. Although the first step of degradation involves only the photochemical process related to the loss of the chlorine and hydrogen atoms. This cyclization reaction leads to the formation of intermediate, which degradation is facilitated by the modified material. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The present work reports the effects caused by barium on phase formation, morphology and sintering of lead magnesium niobate-lead titanate (PMN-50PT). Ab initio study of 0.5PbMg(1/3)Nb(2/3)O(3)-0.5Ba(x)Pb((1-x))TiO(3) ceramic powders, with x = 0, 0.20, and 0.40 was proposed, considering that the partial substitution of lead by barium can reestablish the equilibrium of monoclinic-tetragonal phases in the system. It was verified that even for 40 mol% of barium, it was possible to obtain pyrochlore-free PMN-PT powders. The increase of the lattice parameters of PMN-PT doped-powders confirmed dopant incorporation into the perovskite phase. The presence of barium improved the reactivity of the powders, with an average particle size of 120 nm for 40 mol% of barium against 167 mn for the pure sample. Although high barium content (40 mol%) was deleterious for a dense ceramic, contents up to 20 mol% allowed 95% density when sintered at 1100 degrees C for 4 h. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this work Ba0.99Eu0.01MoO4 (BEMO) powders were prepared by the first time by the Complex Polymerization Method. The structural and optical properties of the BEMO powders were characterized by Fourier Transform Infra-Red (FTIR), X-ray Diffraction (XRD), Raman Spectra, High-Resolution Scanning Electron Microscopy (HR-SEM) and Photoluminescent Measurements. XRD show a crystalline scheelite-type phase after the heat treatment at temperatures greater than 400 degrees C. The ionic radius of Eu3+ (0.109 nm) is lower than the Ba2+ (0.149 nm) one. This difference is responsible for the decrease in the lattice parameters of the BEMO compared to the pure BaMoO4 matrix. This little difference in the lattice parameters show that Eu3+ is expected to occupy the Ba2+ site at different temperatures, stayed the tetragonal (S-4) symmetry characteristic of scheelite-type crystalline structures of BaMoO4. The emission spectra of the samples, when excited at 394 nm, presented the D-5(1)-> F-7(0, 1 and 2) and D-5(0)-> F-7(0, 1, 2, 3 and 4) Eu3+ transitions at 523, 533, 554, 578, 589, 614, 652 and 699 nm, respectively. The emission spectra of the powders heat-treated at 800 and 900 degrees C showed a marked increase in its intensities compared to the materials heat-treated from 400 to 700 C. The decay times for the sample were evaluated and all of them presented the average value of 0.61 ms. Eu3+ luminescence decay time follows one exponential curve indicating the presence of only one type of Eu3+ symmetry site.
Resumo:
In this work we studied the structural and optical properties of lithium tantalate (LiTaO3) powders doped with Eu3+ ions. We have examined the different sites occupied by the rare earth ion through the correlation of the DRX data analyzed with the Rietveld method and some spectroscopic parameters derived from the Eu3+ luminescence. Adirect relation was established between the lattice parameters and the occupation fraction of Eu3+ in each LiTaO3 site. The occupation fraction was set as the relative population of Eu3+ ions for each site obtained by means of the intensity, baricenter, and the spontaneous emission coefficients of the D-5(0)-> F-7(0) transitions. We concluded that the unit cell parameter a presents the same behavior of the Eu3+ occupation fraction in Ta5+ sites as a function of the Eu3+ content in LiTaO3. The same was observed for the variation in Eu3+ occupation fraction in the Li+ site and the unit cell parameter c with the Eu3+ content. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3204967]
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)