833 resultados para largest common subgraph
Resumo:
Mercury (Hg) exposure is associated with disease conditions, including cardiovascular problems. Although the mechanisms implicated in these complications have not been precisely defined yet, matrix metalloproteinases (MMPs) may be involved. The gene encoding MMP-2 presents genetic polymorphisms which affect the expression and activity level of this enzyme. A common polymorphism of MMP-2 gene is the C(-1306)T (rs 243865), which is known to disrupt a Sp1-type promoter site (CCACC box), thus leading to lower promoter activity associated with the T allele. This study aimed at examining how this polymorphism affects the circulating MMP-2 levels and its endogenous inhibitor, the tissue inhibitor of metalloproteinase-2 (TIMP-2) in 210 subjects environmentally exposed to Hg. Total blood and plasma Hg concentrations were determined by inductively coupled plasma-mass spectrometry (ICP-MS). MMP-2 and TIMP-2 concentrations were measured in plasma samples by gelatin zymography and ELISA, respectively. Genotypes for the C(-1306)T polymorphism were determined by Taqman (R) Allele Discrimination assay. We found a positive association (p = 0.0057) between plasma Hg concentrations and MMP-2/TIMP-2 (an index of net MMP-2 activity). The C(-1306)T polymorphism modified MMP-2 concentrations (p = 0.0465) and MMP-2/TIMP-2 ratio (p = 0.0060) in subjects exposed to Hg, with higher MMP-2 levels been found in subjects carrying the C allele. These findings suggest a significant interaction between the C(-1306)T polymorphism and Hg exposure, possibly increasing the risk of developing diseases in subjects with the C allele. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A graph H is said to divide a graph G if there exists a set S of subgraphs of G, all isomorphic to H, such that the edge set of G is partitioned by the edge sets of the subgraphs in S. Thus, a graph G is a common multiple of two graphs if each of the two graphs divides G.
Resumo:
Small mesothermal vein quam-gold-base-metal sulfide deposits from which some 20 t of Au-Ag bullion have been extracted, are the most common gold deposits in the Georgetown region of north Queensland-several hundred were mined or prospected between 1870 and 1950. These deposits are mostly hosted by Proterozoic granitic and metamorphic rocks and are similar to the much larger Charters Towers deposits such as Day Dawn and Brilliant, and in some respects to the Motherlode deposits of California. The largest deposit in the region-Kidston (> 138 t of Au and Ag since 1985)- is substantially different. It is hosted by sheeted quartz veins and cavities in brecciated Silurian granite and Proterozoic metamorphics above nested high-level Carboniferous intrusives associated with a nearby cauldron subsidence structure. This paper provides new information (K-Ar and Rb-Sr isotopic ages, preliminary oxygen isotope and fluid-inclusion data) from some of the mesothermal deposits and compares it with the Kidston deposit. All six dated mesothermal deposits have Siluro-Devonian (about 425 to 400 Ma) ages. All nine of such deposits analysed have delta(18)O quartz values in the range 8.4 to 15.7 parts per thousand, Fluid-inclusion data indicate homogenisation temperatures in the range 230-350 degrees C. This information, and a re-interpretation of the spatial relationships of the deposits with various elements of the updated regional geology, is used to develop a preliminary metallogenic model of the mesothermal Etheridge Goldfield. The model indicates how the majority of deposits may have formed from hydrothermal systems initiated during the emplacement of granitic batholiths that were possibly, but not clearly, associated with Early Palaeozoic subduction, and that these fluid systems were dominated by substantially modified meteoric and/or magmatic fluids. The large Kidston deposit and a few small relatives are of Carboniferous age and formed more directly from magmatic systems much closer to the surface.
Resumo:
A common mechanism for chromosomal fragile site genesis is not yet apparent. Folate-sensitive fragile sites are expanded p(CCG)n repeats that arise from longer normal alleles. Distamycin A or bromodeoxyuridine-inducible fragile site FRA16B is an expanded AT-rich similar to 33 bp repeat; however, the relationship between normal and fragile site alleles is not known. Here, we report that bromodeoxyuridine-inducible, distamycin A-insensitive fragile site FRA10B is composed of expanded similar to 42 bp repeats. Differences in repeat motif length or composition between different FRA10B families indicate multiple independent expansion events. Some FRA10B alleles comprise a mixture of different expanded repeat motifs. FRA10B fragile site and long normal alleles share flanking polymorphisms. Somatic and intergenerational FRA10B repeat instability analogous to that found in expanded trinucleotide repeats supports dynamic mutation as a common mechanism for repeat expansion.
Resumo:
The synthetic peptide pilosulin 1, corresponding to the largest defined allergenic polypeptide found in the venom of the jumper ant Myrmecia pilosula, inhibited the incorporation of [methyl-H-3]thymidine into proliferating Epstein-Barr transformed (EBV) B-cells. The LD50 was four-fold lower in concentration than melittin, a cytotoxic peptide found in honey bee venom. Loss of cell viability was assessed by flow cytometry by measuring the proportion of cells that fluoresced in the presence of the fluorescent dye 7-aminoactinomycin D. Examination of proliferating EBV B-cells indicated that the cells lost viability within a few minutes exposure to pilosulin 1. Partial peptides of pilosulin 1 were less efficient in causing loss of cell viability and the results suggest that the 22 N-terminal residues are critical to the cytotoxic activity of pilosulin 1. Normal blood white cells were also labile to pilosulin I. T- and B-lymphocytes, monocytes and natural killer cells, however, were more labile than granulocytes. Analysis of pilosulin I using circular dichroism indicated that, in common with melittin and other Hymenoptera venom toxins, it had the potential to adopt an cc-helical secondary structure. (C) 1998 Elsevier Science B.V, All rights reserved.
Resumo:
Previously we described activating mutations of h beta(c), the common signaling subunit of the receptors for the hematopoietic and inflammatory cytokines, GM-CSF, IL-3, and IL-5. The activated mutant, h beta(c)FI Delta, is able to confer growth factor-independent proliferation on the murine myeloid cell line FDC-P1, and on primary committed myeloid progenitors. We have used this activating mutation to study the effects of chronic cytokine receptor stimulation. Transgenic mice were produced carrying the h beta(c)FI Delta cDNA linked to the constitutive promoter derived from the phosphoglycerate kinase gene, PGK-1. Transgene expression was demonstrated in several tissues and functional activity of the mutant receptor was confirmed in hematopoietic tissues by the presence of granulocyte macrophage and macrophage colony-forming cells (CFU-GM and CFU-M) in the absence of added cytokines. All transgenic mice display a myeloproliferative disorder characterized by splenomegaly, erythrocytosis, and granulocytic and megakaryocytic hyperplasia. This disorder resembles the human disease polycythemia vera, suggesting that activating mutations in h beta(c) may play a role in the pathogenesis of this myeloproliferative disorder. In addition, these transgenic mice develop a sporadic, progressive neurological disease and display bilateral, symmetrical foci of necrosis in the white matter of brain stem associated with an accumulation of macrophages. Thus, chronic h beta(c) activation has the potential to contribute to pathological events in the central nervous system.
Resumo:
Structurally related tetratricopeptide repeat motifs in steroid receptor-associated immunophilins and the STI1 homolog, Hop, mediate the interaction with a common cellular target, hsp90, We have identified the binding domain in hsp90 for cyclophilin 40 (CyP40) using a two-hybrid system screen of a mouse cDNA library. All isolated clones encoded the intact carboxyl terminus of hsp90 and overlapped with a common region corresponding to amino acids 558-724 of murine hsp84, The interaction was confirmed in vitro with bacterially expressed CyP40 and deletion mutants of hsp90 beta and was delineated further to a 124-residue COOH-terminal segment of hsp90, Deletion of the conserved MEEVD sequence at the extreme carboxyl terminus of hsp90 precludes interaction with CyP40, signifying an important role for this motif in hsp90 function. We show that CyP40 and Hop display similar interaction profiles with hsp90 truncation mutants and present evidence for the direct competition of Hop and FK506-binding protein 52 with CyP40 for binding to the hsp90 COOH-terminal region. Our results are consistent with a common tetratricopeptide repeat interaction site for Hop and steroid receptor associated immunophilins within a discrete COOH-terminal domain of hsp90. This region of hsp90 mediates ATP-independent chaperone activity, overlaps the hsp90 dimerization domain, and includes structural elements important for steroid receptor interaction.
Resumo:
The high affinity receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF) consists of a cytokine-specific alpha-subunit (hGMR alpha) and a common signal-transducing beta-subunit (hpc) that is shared with the interleukin-3 and -5 receptors, We have previously identified a constitutively active extracellular point mutant of hpc, I374N, that can confer factor independence on murine FDC-P1 cells but not BAF-B03 or CTLL-2 cells (Jenkins, B. J., D'Andrea, R. J., and Gonda, T. J. (1995) EMBO J. 14, 4276-4287), This restricted activity suggested the involvement of cell type-specific signaling molecules in the activation of this mutant. We report here that one such molecule is the mouse GMR alpha (mGMR alpha) subunit, since introduction of mGMR alpha, but not hGMR alpha, into BAF-B03 or CTLL-2 cells expressing the I374N mutant conferred factor independence, Experiments utilizing mouse/human chimeric GMR alpha subunits indicated that the species specificity lies in the extracellular domain of GMRa. Importantly, the requirement for mGMR alpha correlated with the ability of I374N (but not wild-type hpc) to constitutively associate with mGMRa. Expression of I374N in human factor-dependent UT7 cells also led to factor-independent proliferation, with concomitant up-regulation of hGMR alpha surface expression. Taken together, these findings suggest a critical role for association with GMR alpha in the constitutive activity of I374N.
Resumo:
Several constitutively active mutant forms of the common β subunit of the human IL-3, IL-5 and GM-CSF receptors (hβc), which enable it to signal in the absence of ligand, have recently been described. Two of these, V449E and I374N, are amino acid substitutions in the transmembrane and extracellular regions of hβc, respectively. A third, FIΔ, contains a 37 amino acid duplication in the extracellular domain. We have shown previously that when expressed in primary murine haemopoietic cells, the extracellular mutants confer factor-independence on cells of the neutrophil and monocyte lineages only, whereas V449E does so on all cell types of the myeloid and erythroid compartments. To study the in vivo effects and leukaemic potential of these mutants, we have expressed all three in mice by bone marrow reconstitution using retrovirally infected donor cells. Expression of the extracellular mutants leads to an early onset, chronic myeloproliferative disorder marked by elevations in the neutrophil, monocyte, erythrocyte and platelet lineages. In contrast, expression of V449E leads to an acute leukaemia-like syndrome of anaemia, thrombocytopaenia and blast cell expansion. These data support the possibility that activating mutations in hβc are involved in haemopoietic disorders in man.
Resumo:
Two studies examined relations between groups (humanities and math-science students) that implicitly or explicitly share a common superordinate category (university student). In Experiment 1, 178 participants performed a noninteractive decision-making task during which category salience was manipulated in a 2 (superordinate category salience) x 2 (subordinate category salience) between-groups design. Consistent with the mutual intergroup differentiation model, participants for whom both categories were salient exhibited the lowest levels of bias, whereas bias was strongest when the superordinate category alone was made salient. This pattern of results was replicated in Experiment 2 (N = 135). In addition, Experiment 2 demonstrated that members of subgroups that are nested within a superordinate category are more sensitive to how the superordinate category is represented than are members of subgroups that extend beyond the boundaries of the superordinate category.