882 resultados para knowledge-based system
Resumo:
Clinical pathways have been adopted for various diseases in clinical departments for quality improvement as a result of standardization of medical activities in treatment process. Using knowledge-based decision support on the basis of clinical pathways is a promising strategy to improve medical quality effectively. However, the clinical pathway knowledge has not been fully integrated into treatment process and thus cannot provide comprehensive support to the actual work practice. Therefore this paper proposes a knowledgebased clinical pathway management method which contributes to make use of clinical knowledge to support and optimize medical practice. We have developed a knowledgebased clinical pathway management system to demonstrate how the clinical pathway knowledge comprehensively supports the treatment process. The experiences from the use of this system show that the treatment quality can be effectively improved by the extracted and classified clinical pathway knowledge, seamless integration of patient-specific clinical pathway recommendations with medical tasks and the evaluating pathway deviations for optimization.
Resumo:
In order to overcome divergence of estimation with the same data, the proposed digital costing process adopts an integrated design of information system to design the process knowledge and costing system together. By employing and extending a widely used international standard, industry foundation classes, the system can provide an integrated process which can harvest information and knowledge of current quantity surveying practice of costing method and data. Knowledge of quantification is encoded from literatures, motivation case and standards. It can reduce the time consumption of current manual practice. The further development will represent the pricing process in a Bayesian Network based knowledge representation approach. The hybrid types of knowledge representation can produce a reliable estimation for construction project. In a practical term, the knowledge management of quantity surveying can improve the system of construction estimation. The theoretical significance of this study lies in the fact that its content and conclusion make it possible to develop an automatic estimation system based on hybrid knowledge representation approach.
Resumo:
This paper introduces an ontology-based knowledge model for knowledge management. This model can facilitate knowledge discovery that provides users with insight for decision making. The users requiring the insight normally play different roles with different requirements in an organisation. To meet the requirements, insights are created by purposely aggregated transnational data. This involves a semantic data integration process. In this paper, we present a knowledge management system which is capable of representing knowledge requirements in a domain context and enabling the semantic data integration through ontology modeling. The knowledge domain context of United Bible Societies is used to illustrate the features of the knowledge management capabilities.
Resumo:
In this invited article the authors present an evaluative report on the development of the MESHGuides project (http://www.meshguides.org/). MESHGuides’ objective is to provide education with an international knowledge management system. MESHGuides were conceived as research summaries for supporting teachers’ in developing evidence-based practice. Their aim is to enhance teachers’ capacity to engage actively with research in their own classrooms. The original thinking for MESH arose from the work of UK-based academics Professor Marilyn Leask and Dr Sarah Younie in response to a desire, which has recently gathered momentum in the UK, for the development of a more research-informed teaching profession and for the establishment of an on-line platform to support evidence-based practice (DfE, 2015; Leask and Younie 2001; OECD 2009). The focus of this article is on how the MESHGuides project was conceived and structured, the technical systems supporting it and the practical reality for academics and teachers of composing and using MESHGuides. The project and the guides are in the early stages of development, and discussion indicates future possibilities for more global engagement with this knowledge management system.
Resumo:
A crucial concern in the evaluation of evidence related to a major crime is the formulation of sufficient alternative plausible scenarios that can explain the available evidence. However, software aimed at assisting human crime investigators by automatically constructing crime scenarios from evidence is difficult to develop because of the almost infinite variation of plausible crime scenarios. This paper introduces a novel knowledge driven methodology for crime scenario construction and it presents a decision support system based on it. The approach works by storing the component events of the scenarios instead of entire scenarios and by providing an algorithm that can instantiate and compose these component events into useful scenarios. The scenario composition approach is highly adaptable to unanticipated cases because it allows component events to match the case under investigation in many different ways. Given a description of the available evidence, it generates a network of plausible scenarios that can then be analysed to devise effective evidence collection strategies. The applicability of the ideas presented here are demonstrated by means of a realistic example and prototype decision support software.
Resumo:
A prevalent claim is that we are in knowledge economy. When we talk about knowledge economy, we generally mean the concept of “Knowledge-based economy” indicating the use of knowledge and technologies to produce economic benefits. Hence knowledge is both tool and raw material (people’s skill) for producing some kind of product or service. In this kind of environment economic organization is undergoing several changes. For example authority relations are less important, legal and ownership-based definitions of the boundaries of the firm are becoming irrelevant and there are only few constraints on the set of coordination mechanisms. Hence what characterises a knowledge economy is the growing importance of human capital in productive processes (Foss, 2005) and the increasing knowledge intensity of jobs (Hodgson, 1999). Economic processes are also highly intertwined with social processes: they are likely to be informal and reciprocal rather than formal and negotiated. Another important point is also the problem of the division of labor: as economic activity becomes mainly intellectual and requires the integration of specific and idiosyncratic skills, the task of dividing the job and assigning it to the most appropriate individuals becomes arduous, a “supervisory problem” (Hogdson, 1999) emerges and traditional hierarchical control may result increasingly ineffective. Not only specificity of know how makes it awkward to monitor the execution of tasks, more importantly, top-down integration of skills may be difficult because ‘the nominal supervisors will not know the best way of doing the job – or even the precise purpose of the specialist job itself – and the worker will know better’ (Hogdson,1999). We, therefore, expect that the organization of the economic activity of specialists should be, at least partially, self-organized. The aim of this thesis is to bridge studies from computer science and in particular from Peer-to-Peer Networks (P2P) to organization theories. We think that the P2P paradigm well fits with organization problems related to all those situation in which a central authority is not possible. We believe that P2P Networks show a number of characteristics similar to firms working in a knowledge-based economy and hence that the methodology used for studying P2P Networks can be applied to organization studies. Three are the main characteristics we think P2P have in common with firms involved in knowledge economy: - Decentralization: in a pure P2P system every peer is an equal participant, there is no central authority governing the actions of the single peers; - Cost of ownership: P2P computing implies shared ownership reducing the cost of owing the systems and the content, and the cost of maintaining them; - Self-Organization: it refers to the process in a system leading to the emergence of global order within the system without the presence of another system dictating this order. These characteristics are present also in the kind of firm that we try to address and that’ why we have shifted the techniques we adopted for studies in computer science (Marcozzi et al., 2005; Hales et al., 2007 [39]) to management science.
Resumo:
Background: Diabetes mellitus is spreading throughout the world and diabetic individuals have been shown to often assess their food intake inaccurately; therefore, it is a matter of urgency to develop automated diet assessment tools. The recent availability of mobile phones with enhanced capabilities, together with the advances in computer vision, have permitted the development of image analysis apps for the automated assessment of meals. GoCARB is a mobile phone-based system designed to support individuals with type 1 diabetes during daily carbohydrate estimation. In a typical scenario, the user places a reference card next to the dish and acquires two images using a mobile phone. A series of computer vision modules detect the plate and automatically segment and recognize the different food items, while their 3D shape is reconstructed. Finally, the carbohydrate content is calculated by combining the volume of each food item with the nutritional information provided by the USDA Nutrient Database for Standard Reference. Objective: The main objective of this study is to assess the accuracy of the GoCARB prototype when used by individuals with type 1 diabetes and to compare it to their own performance in carbohydrate counting. In addition, the user experience and usability of the system is evaluated by questionnaires. Methods: The study was conducted at the Bern University Hospital, “Inselspital” (Bern, Switzerland) and involved 19 adult volunteers with type 1 diabetes, each participating once. Each study day, a total of six meals of broad diversity were taken from the hospital’s restaurant and presented to the participants. The food items were weighed on a standard balance and the true amount of carbohydrate was calculated from the USDA nutrient database. Participants were asked to count the carbohydrate content of each meal independently and then by using GoCARB. At the end of each session, a questionnaire was completed to assess the user’s experience with GoCARB. Results: The mean absolute error was 27.89 (SD 38.20) grams of carbohydrate for the estimation of participants, whereas the corresponding value for the GoCARB system was 12.28 (SD 9.56) grams of carbohydrate, which was a significantly better performance ( P=.001). In 75.4% (86/114) of the meals, the GoCARB automatic segmentation was successful and 85.1% (291/342) of individual food items were successfully recognized. Most participants found GoCARB easy to use. Conclusions: This study indicates that the system is able to estimate, on average, the carbohydrate content of meals with higher accuracy than individuals with type 1 diabetes can. The participants thought the app was useful and easy to use. GoCARB seems to be a well-accepted supportive mHealth tool for the assessment of served-on-a-plate meals.
Resumo:
Knowledge modeling tools are software tools that follow a modeling approach to help developers in building a knowledge-based system. The purpose of this article is to show the advantages of using this type of tools in the development of complex knowledge-based decision support systems. In order to do so, the article describes the development of a system called SAIDA in the domain of hydrology with the help of the KSM modeling tool. SAIDA operates on real-time receiving data recorded by sensors (rainfall, water levels, flows, etc.). It follows a multi-agent architecture to interpret the data, predict the future behavior and recommend control actions. The system includes an advanced knowledge based architecture with multiple symbolic representation. KSM was especially useful to design and implement the complex knowledge based architecture in an efficient way.
Resumo:
Effective automatic summarization usually requires simulating human reasoning such as abstraction or relevance reasoning. In this paper we describe a solution for this type of reasoning in the particular case of surveillance of the behavior of a dynamic system using sensor data. The paper first presents the approach describing the required type of knowledge with a possible representation. This includes knowledge about the system structure, behavior, interpretation and saliency. Then, the paper shows the inference algorithm to produce a summarization tree based on the exploitation of the physical characteristics of the system. The paper illustrates how the method is used in the context of automatic generation of summaries of behavior in an application for basin surveillance in the presence of river floods.
Resumo:
This document is a summary of the Bachelor thesis titled “VHDL-Based System Design of a Cognitive Sensorimotor Loop (CSL) for Haptic Human-Machine Interaction (HMI)” written by Pablo de Miguel Morales, Electronics Engineering student at the Universidad Politécnica de Madrid (UPM Madrid, Spain) during an Erasmus+ Exchange Program at the Beuth Hochschule für Technik (BHT Berlin, Germany). The tutor of this project is Dr. Prof. Hild. This project has been developed inside the Neurobotics Research Laboratory (NRL) in close collaboration with Benjamin Panreck, a member of the NRL, and another exchange student from the UPM Pablo Gabriel Lezcano. For a deeper comprehension of the content of the thesis, a deeper look in the document is needed as well as the viewing of the videos and the VHDL design. In the growing field of automation, a large amount of workforce is dedicated to improve, adapt and design motor controllers for a wide variety of applications. In the specific field of robotics or other machinery designed to interact with humans or their environment, new needs and technological solutions are often being discovered due to the existing, relatively unexplored new scenario it is. The project consisted of three main parts: Two VHDL-based systems and one short experiment on the haptic perception. Both VHDL systems are based on a Cognitive Sensorimotor Loop (CSL) which is a control loop designed by the NRL and mainly developed by Dr. Prof. Hild. The CSL is a control loop whose main characteristic is the fact that it does not use any external sensor to measure the speed or position of the motor but the motor itself. The motor always generates a voltage that is proportional to its angular speed so it does not need calibration. This method is energy efficient and simplifies control loops in complex systems. The first system, named CSL Stay In Touch (SIT), consists in a one DC motor system controller by a FPGA Board (Zynq ZYBO 7000) whose aim is to keep contact with any external object that touches its Sensing Platform in both directions. Apart from the main behavior, three features (Search Mode, Inertia Mode and Return Mode) have been designed to enhance the haptic interaction experience. Additionally, a VGA-Screen is also controlled by the FPGA Board for the monitoring of the whole system. This system has been completely developed, tested and improved; analyzing its timing and consumption properties. The second system, named CSL Fingerlike Mechanism (FM), consists in a fingerlike mechanical system controlled by two DC motors (Each controlling one part of the finger). The behavior is similar to the first system but in a more complex structure. This system was optional and not part of the original objectives of the thesis and it could not be properly finished and tested due to the lack of time. The haptic perception experiment was an experiment conducted to have an insight into the complexity of human haptic perception in order to implement this knowledge into technological applications. The experiment consisted in testing the capability of the subjects to recognize different objects and shapes while being blindfolded and with their ears covered. Two groups were done, one had full haptic perception while the other had to explore the environment with a plastic piece attached to their finger to create a haptic handicap. The conclusion of the thesis was that a haptic system based only on a CSL-based system is not enough to retrieve valuable information from the environment and that other sensors are needed (temperature, pressure, etc.) but that a CSL-based system is very useful to control the force applied by the system to interact with haptic sensible surfaces such as skin or tactile screens. RESUMEN. Este documento es un resumen del proyecto fin de grado titulado “VHDL-Based System Design of a Cognitive Sensorimotor Loop (CSL) for Haptic Human-Machine Interaction (HMI)” escrito por Pablo de Miguel, estudiante de Ingeniería Electrónica de Comunicaciones en la Universidad Politécnica de Madrid (UPM Madrid, España) durante un programa de intercambio Erasmus+ en la Beuth Hochschule für Technik (BHT Berlin, Alemania). El tutor de este proyecto ha sido Dr. Prof. Hild. Este proyecto se ha desarrollado dentro del Neurorobotics Research Laboratory (NRL) en estrecha colaboración con Benjamin Panreck (un miembro del NRL) y con Pablo Lezcano (Otro estudiante de intercambio de la UPM). Para una comprensión completa del trabajo es necesaria una lectura detenida de todo el documento y el visionado de los videos y análisis del diseño VHDL incluidos en el CD adjunto. En el creciente sector de la automatización, una gran cantidad de esfuerzo está dedicada a mejorar, adaptar y diseñar controladores de motor para un gran rango de aplicaciones. En el campo específico de la robótica u otra maquinaria diseñada para interactuar con los humanos o con su entorno, nuevas necesidades y soluciones tecnológicas se siguen desarrollado debido al relativamente inexplorado y nuevo escenario que supone. El proyecto consta de tres partes principales: Dos sistemas basados en VHDL y un pequeño experimento sobre la percepción háptica. Ambos sistemas VHDL están basados en el Cognitive Sesnorimotor Loop (CSL) que es un lazo de control creado por el NRL y cuyo desarrollador principal ha sido Dr. Prof. Hild. El CSL es un lazo de control cuya principal característica es la ausencia de sensores externos para medir la velocidad o la posición del motor, usando el propio motor como sensor. El motor siempre genera un voltaje proporcional a su velocidad angular de modo que no es necesaria calibración. Este método es eficiente en términos energéticos y simplifica los lazos de control en sistemas complejos. El primer sistema, llamado CSL Stay In Touch (SIT), consiste en un sistema formado por un motor DC controlado por una FPGA Board (Zynq ZYBO 7000) cuyo objetivo es mantener contacto con cualquier objeto externo que toque su plataforma sensible en ambas direcciones. Aparte del funcionamiento básico, tres modos (Search Mode, Inertia Mode y Return Mode) han sido diseñados para mejorar la interacción. Adicionalmente, se ha diseñado el control a través de la FPGA Board de una pantalla VGA para la monitorización de todo el sistema. El sistema ha sido totalmente desarrollado, testeado y mejorado; analizando su propiedades de timing y consumo energético. El segundo sistema, llamado CSL Fingerlike Mechanism (FM), consiste en un mecanismo similar a un dedo controlado por dos motores DC (Cada uno controlando una falange). Su comportamiento es similar al del primer sistema pero con una estructura más compleja. Este sistema no formaba parte de los objetivos iniciales del proyecto y por lo tanto era opcional. No pudo ser plenamente desarrollado debido a la falta de tiempo. El experimento de percepción háptica fue diseñado para profundizar en la percepción háptica humana con el objetivo de aplicar este conocimiento en aplicaciones tecnológicas. El experimento consistía en testear la capacidad de los sujetos para reconocer diferentes objetos, formas y texturas en condiciones de privación del sentido del oído y la vista. Se crearon dos grupos, en uno los sujetos tenían plena percepción háptica mientras que en el otro debían interactuar con los objetos a través de una pieza de plástico para generar un hándicap háptico. La conclusión del proyecto fue que un sistema háptico basado solo en sistemas CSL no es suficiente para recopilar información valiosa del entorno y que debe hacer uso de otros sensores (temperatura, presión, etc.). En cambio, un sistema basado en CSL es idóneo para el control de la fuerza aplicada por el sistema durante la interacción con superficies hápticas sensibles tales como la piel o pantallas táctiles.
Resumo:
The extension to new languages is a well known bottleneck for rule-based systems. Considerable human effort, which typically consists in re-writing from scratch huge amounts of rules, is in fact required to transfer the knowledge available to the system from one language to a new one. Provided sufficient annotated data, machine learning algorithms allow to minimize the costs of such knowledge transfer but, up to date, proved to be ineffective for some specific tasks. Among these, the recognition and normalization of temporal expressions still remains out of their reach. Focusing on this task, and still adhering to the rule-based framework, this paper presents a bunch of experiments on the automatic porting to Italian of a system originally developed for Spanish. Different automatic rule translation strategies are evaluated and discussed, providing a comprehensive overview of the challenge.
Resumo:
The Answer Validation Exercise (AVE) is a pilot track within the Cross-Language Evaluation Forum (CLEF) 2006. The AVE competition provides an evaluation frame- work for answer validations in Question Answering (QA). In our participation in AVE, we propose a system that has been initially used for other task as Recognising Textual Entailment (RTE). The aim of our participation is to evaluate the improvement our system brings to QA. Moreover, due to the fact that these two task (AVE and RTE) have the same main idea, which is to find semantic implications between two fragments of text, our system has been able to be directly applied to the AVE competition. Our system is based on the representation of the texts by means of logic forms and the computation of semantic comparison between them. This comparison is carried out using two different approaches. The first one managed by a deeper study of the Word- Net relations, and the second uses the measure defined by Lin in order to compute the semantic similarity between the logic form predicates. Moreover, we have also designed a voting strategy between our system and the MLEnt system, also presented by the University of Alicante, with the aim of obtaining a joint execution of the two systems developed at the University of Alicante. Although the results obtained have not been very high, we consider that they are quite promising and this supports the fact that there is still a lot of work on researching in any kind of textual entailment.
Validation of a light-weight approach to knowledge-based re-engineering by a COBOL-to-Java converter
Resumo:
The performance of most operations systems is significantly affected by the interaction of human decision-makers. A methodology, based on the use of visual interactive simulation (VIS) and artificial intelligence (AI), is described that aims to identify and improve human decision-making in operations systems. The methodology, known as 'knowledge-based improvement' (KBI), elicits knowledge from a decision-maker via a VIS and then uses AI methods to represent decision-making. By linking the VIS and AI representation, it is possible to predict the performance of the operations system under different decision-making strategies and to search for improved strategies. The KBI methodology is applied to the decision-making surrounding unplanned maintenance operations at a Ford Motor Company engine assembly plant.
Resumo:
The topic of this thesis is the development of knowledge based statistical software. The shortcomings of conventional statistical packages are discussed to illustrate the need to develop software which is able to exhibit a greater degree of statistical expertise, thereby reducing the misuse of statistical methods by those not well versed in the art of statistical analysis. Some of the issues involved in the development of knowledge based software are presented and a review is given of some of the systems that have been developed so far. The majority of these have moved away from conventional architectures by adopting what can be termed an expert systems approach. The thesis then proposes an approach which is based upon the concept of semantic modelling. By representing some of the semantic meaning of data, it is conceived that a system could examine a request to apply a statistical technique and check if the use of the chosen technique was semantically sound, i.e. will the results obtained be meaningful. Current systems, in contrast, can only perform what can be considered as syntactic checks. The prototype system that has been implemented to explore the feasibility of such an approach is presented, the system has been designed as an enhanced variant of a conventional style statistical package. This involved developing a semantic data model to represent some of the statistically relevant knowledge about data and identifying sets of requirements that should be met for the application of the statistical techniques to be valid. Those areas of statistics covered in the prototype are measures of association and tests of location.