998 resultados para kinase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Dysfunctional lymphatic vessel formation has been implicated in a number of pathological conditions including cancer metastasis, lymphedema, and impaired wound healing. The vascular endothelial growth factor (VEGF) family is a major regulator of lymphatic endothelial cell (LEC) function and lymphangiogenesis. Indeed, dissemination of malignant cells into the regional lymph nodes, a common occurrence in many cancers, is stimulated by VEGF family members. This effect is generally considered to be mediated via VEGFR-2 and VEGFR-3. However, the role of specific receptors and their downstream signaling pathways is not well understood. Methods and Results Here we delineate the VEGF-C/VEGF receptor (VEGFR)-3 signaling pathway in LECs and show that VEGF-C induces activation of PI3K/Akt and MEK/Erk. Furthermore, activation of PI3K/Akt by VEGF-C/VEGFR-3 resulted in phosphorylation of P70S6K, eNOS, PLCc1, and Erk1/2. Importantly, a direct interaction between PI3K and VEGFR-3 in LECs was demonstrated both in vitro and in clinical cancer specimens. This interaction was strongly associated with the presence of lymph node metastases in primary small cell carcinoma of the lung in clinical specimens. Blocking PI3K activity abolished VEGF-C-stimulated LEC tube formation and migration. Conclusions Our findings demonstrate that specific VEGFR-3 signaling pathways are activated in LECs by VEGF-C. The importance of PI3K in VEGF-C/VEGFR-3-mediated lymphangiogenesis provides a potential therapeutic target for the inhibition of lymphatic metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order for cells to stop moving, they must synchronously stabilize actin filaments and their associated focal adhesions. How these two structures are coordinated in time and space is not known. We show here that the actin association protein Tm5NM1, which induces stable actin filaments, concurrently suppresses the trafficking of focal-adhesion-regulatory molecules. Using combinations of fluorescent biosensors and fluorescence recovery after photobleaching (FRAP), we demonstrate that Tm5NM1 reduces the level of delivery of Src kinase to focal adhesions, resulting in reduced phosphorylation of adhesion-resident Src substrates. Live imaging of Rab11-positive recycling endosomes that carry Src to focal adhesions reveals disruption of this pathway. We propose that tropomyosin synchronizes adhesion dynamics with the cytoskeleton by regulating actin-dependent trafficking of essential focal-adhesion molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this issue of Cancer Discovery, Hagel and colleagues report the design and the in vitro and in vivo activity of a novel, irreversible, paralog-specific kinase inhibitor of FGFR4, BLU9931. This compound binds covalently to a cysteine residue in the hinge region of FGFR4 but not in FGFR1-3. BLU9931 induces tumor shrinkage in hepatocellular carcinoma models that express a functioning ligand/receptor complex consisting of FGF19/FGFR4/KLB and adds to a growing list of anti-FGFR4 agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several Eph receptor tyrosine kinases (RTKs) are commonly over-expressed in epithelial and mesenchymal cancers and are recognized as promising therapeutic targets. Although normal interaction between Eph receptors and their ephrin ligands stimulates kinase activity and is generally tumor suppressive, significant Eph over-expression allows activation of ligand- and/or kinase-independent signaling pathways that promote oncogenesis. Single-agent kinase inhibitors are widely used to target RTK-driven tumors but acquired and de novo resistance to such agents is a major limitation to effective clinical use. Accumulating evidence suggests that Ephs can be inhibited by “leaky” or low-specificity kinase inhibitors targeted at other RTKs. Such off-target effects may therefore inadvertently promote ligand- and/or kinase-independent oncogenic Eph signaling, thereby providing a new mechanism by which resistance to the RTK inhibitors can emerge. We propose that combining specific, non-leaky kinase inhibitors with tumor-suppressive stimulators of Eph signaling may provide more effective treatment options for overcoming treatment-induced resistance and clinical failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EphB4 is a membrane-bound receptor tyrosine kinase (RTK) commonly over-produced by many epithelial cancers but with low to no expression in most normal adult tissues. EphB4 over-production promotes ligand-independent signaling pathways that increase cancer cell viability and stimulate migration and invasion. Several studies have shown that normal ligand-dependent signaling is tumour suppressive and therefore novel therapeutics which block the tumour promoting ligand-independent signaling and/or stimulate tumour suppressive ligand-dependent signaling will find application in the treatment of cancer. An EphB4-specific polyclonal antibody, targeting a region of 200 amino acids in the extracellular portion of EphB4, showed potent in vitro anti-cancer effects measured by an increase in apoptosis and a decrease in anchorage independent growth. Peptide exclusion was used to identify the epitope targeted by this antibody within the cysteine-rich region of the EphB4 protein, a sequence defined as a potential ligand interacting interface. Addition of antibody to cancer cells resulted in phosphorylation and subsequent degradation of the EphB4 protein, suggesting a mechanism that is ligand mimetic and tumour suppressive. A monoclonal antibody which specifically targets this identified extracellular epitope of EphB4 significantly reduced breast cancer xenograft growth in vivo confirming that EphB4 is a useful target for ligand-mimicking antibody-based anti-cancer therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The EphB4 receptor tyrosine kinase is overexpressed in many cancers including prostate cancer. The molecular mechanisms by which this ephrin receptor influences cancer progression are complex as there are tumor-promoting ligand-independent mechanisms in place as well as ligand-dependent tumor suppressive pathways. Methods We employed transient knockdown of EPHB4 in prostate cancer cells, coupled with gene microarray analysis, to identify genes that were regulated by EPHB4 and may represent linked tumor-promoting factors. We validated target genes using qRT-PCR and employed functional assays to determine their role in prostate cancer migration and invasion. Results We discovered that over 500 genes were deregulated upon EPHB4 siRNA knockdown, with integrin β8 (ITGB8) being the top hit (29-fold down-regulated compared to negative non-silencing siRNA). Gene ontology analysis found that the process of cell adhesion was highly deregulated and two other integrin genes, ITGA3 and ITGA10, were also differentially expressed. In parallel, we also discovered that over-expression of EPHB4 led to a concomitant increase in ITGB8 expression. In silico analysis of a prostate cancer progression microarray publically available in the Oncomine database showed that both EPHB4 and ITGB8 are highly expressed in prostatic intraepithelial neoplasia, the precursor to prostate cancer. Knockdown of ITGB8 in PC-3 and 22Rv1 prostate cancer cells in vitro resulted in significant reduction of cell migration and invasion. Conclusions These results reveal that EphB4 regulates integrin β8 expression and that integrin β8 plays a hitherto unrecognized role in the motility of prostate cancer cells and thus targeting integrin β8 may be a new treatment strategy for prostate cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project was a step forward in discovering the potential role of intestinal cell kinase in prostate cancer development. Intestinal cell kinase was shown to be upregulated in prostate cancer cells and altered expression led to changes in key cell survival proteins. This study used in vitro experiments to monitor changes in cell growth, protein and RNA expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a debilitating, chronic demyelinating disease of the central nervous system affecting over 2 million people worldwide. The TAM family of receptor tyrosine kinases (TYRO3, AXL and MERTK) have been implicated as important players during demyelination in both animal models of MS and in the human disease. We therefore conducted an association study to identify single nucleotide polymorphisms (SNPs) within genes encoding the TAM receptors and their ligands associated with MS. Analysis of genotype data from a genome-wide association study which consisted of 1618 MS cases and 3413 healthy controls conducted by the Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene) revealed several SNPs within the MERTK gene (Chromosome 2q14.1, Accession Number NG_011607.1) that showed suggestive association with MS. We therefore interrogated 28 SNPs in MERTK in an independent replication cohort of 1140 MS cases and 1140 healthy controls. We found 12 SNPs that replicated, with 7 SNPs showing p-values of less than 10-5 when the discovery and replication cohorts were combined. All 12 replicated SNPs were in strong linkage disequilibrium with each other. In combination, these data suggest the MERTK gene is a novel risk gene for MS susceptibility. © 2011 Ma et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structures of complexes of Mycobacterium tuberculosis pantothenate kinase with the following ligands have been determined: (i) citrate; (ii) the nonhydrolysable ATP analogue AMPPCP and pantothenate (the initiation complex); (iii) ADP and phosphopantothenate resulting from phosphorylation of pantothenate by ATP in the crystal (the end complex); (iv) ATP and ADP, each with half occupancy, resulting from a quick soak of crystals in ATP (the intermediate complex); (v) CoA; (vi) ADP prepared by soaking and cocrystallization, which turned out to have identical structures, and (vii) ADP and pantothenate. Solution studies on CoA binding and catalytic activity have also been carried out. Unlike in the case of the homologous Escherichia coli enzyme, AMPPCP and ADP occupy different, though overlapping, locations in the respective complexes; the same is true of pantothenate in the initiation complex and phosphopantothenate in the end complex. The binding site of MtPanK is substantially preformed, while that of EcPanK exhibits considerabl plasticity. The difference in the behaviour of the E. coli and M. tuberculosis enzymes could be explained in terms of changes in local structure resulting from substitutions. It is unusual for two homologous enzymes to exhibit such striking differences in action. Therefore, the results have to be treated with caution. However, the changes in the locations of ligands exhibited by M. tuberculosis pantothenate kinase are remarkable and novel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guanylyl cyclases (GCs) are enzymes that generate cyclic GMP and regulate different physiologic and developmental processes in a number of organisms. GCs possess sequence similarity to class III adenylyl cyclases (ACs) and are present as either membrane-bound receptor GCs or cytosolic soluble GCs. We sought to determine the evolution of GCs using a large-scale bioinformatic analysis and found multiple lineage-specific expansions of GC genes in the genomes of many eukaryotes. Moreover, a few GC-like proteins were identified in prokaryotes, which come fused to a number of different domains, suggesting allosteric regulation of nucleotide cyclase activity Eukaryotic receptor GCs are associated with a kinase homology domain (KHD), and phylogenetic analysis of these proteins suggest coevolution of the KHD and the associated cyclase domain as well as a conservation of the sequence and the size of the linker region between the KHD and the associated cyclase domain. Finally, we also report the existence of mimiviral proteins that contain putative active kinase domains associated with a cyclase domain, which could suggest early evolution of the fusion of these two important domains involved in signa transduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional chemotherapy involves cytotoxic agents that indiscriminately target all rapidly-dividing cells. This can lead to significant side effects as healthy cells are also targeted.