865 resultados para kernel estimator


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The FE ('fixed effects') estimator of technical inefficiency performs poorly when N ('number of firms') is large and T ('number of time observations') is small. We propose estimators of both the firm effects and the inefficiencies, which have small sample gains compared to the traditional FE estimator. The estimators are based on nonparametric kernel regression of unordered variables, which includes the FE estimator as a special case. In terms of global conditional MSE ('mean square error') criterions, it is proved that there are kernel estimators which are efficient to the FE estimators of firm effects and inefficiencies, in finite samples. Monte Carlo simulations supports our theoretical findings and in an empirical example it is shown how the traditional FE estimator and the proposed kernel FE estimator lead to very different conclusions about inefficiency of Indonesian rice farmers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

kdens produces univariate kernel density estimates and graphs the result. kdens supplements official Stata's kdensity. Important additions are: adaptive (i.e. variable bandwidth) kernel density estimation, several automatic bandwidth selectors including the Sheather-Jones plug-in estimator, pointwise variability bands and confidence intervals, boundary correction for variables with bounded domain, fast binned approximation estimation. Note that the moremata package, also available from SSC, is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. Methods and materials: The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely. Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. Results: We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Conclusions: Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asymmetric discrete triangular distributions are introduced in order to extend the symmetric ones serving for discrete associated kernels in the nonparametric estimation for discrete functions. The extension from one to two orders around the mode provides a large family of discrete distributions having a finite support. Establishing a bridge between Dirac and discrete uniform distributions, some different shapes are also obtained and their properties are investigated. In particular, the mean and variance are pointed out. Applications to discrete kernel estimators are given with a solution to a boundary bias problem. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaf wetness duration (LWD) is a key parameter in agricultural meteorology since it is related to epidemiology of many important crops, controlling pathogen infection and development rates. Because LWD is not widely measured, several methods have been developed to estimate it from weather data. Among the models used to estimate LWD, those that use physical principles of dew formation and dew and/or rain evaporation have shown good portability and sufficiently accurate results, but their complexity is a disadvantage for operational use. Alternatively, empirical models have been used despite their limitations. The simplest empirical models use only relative humidity data. The objective of this study was to evaluate the performance of three RH-based empirical models to estimate LWD in four regions around the world that have different climate conditions. Hourly LWD, air temperature, and relative humidity data were obtained from Ames, IA (USA), Elora, Ontario (Canada), Florence, Toscany (Italy), and Piracicaba, Sao Paulo State (Brazil). These data were used to evaluate the performance of the following empirical LWD estimation models: constant RH threshold (RH >= 90%); dew point depression (DPD); and extended RH threshold (EXT_RH). Different performance of the models was observed in the four locations. In Ames, Elora and Piracicaba, the RH >= 90% and DPD models underestimated LWD, whereas in Florence these methods overestimated LWD, especially for shorter wet periods. When the EXT_RH model was used, LWD was overestimated for all locations, with a significant increase in the errors. In general, the RH >= 90% model performed best, presenting the highest general fraction of correct estimates (F(C)), between 0.87 and 0.92, and the lowest false alarm ratio (F(AR)), between 0.02 and 0.31. The use of specific thresholds for each location improved accuracy of the RH model substantially, even when independent data were used; MAE ranged from 1.23 to 1.89 h, which is very similar to errors obtained with published physical models for LWD estimation. Based on these results, we concluded that, if calibrated locally, LWD can be estimated with acceptable accuracy by RH above a specific threshold, and that the EXT_RH method was unsuitable for estimating LWD at the locations used in this study. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to establish the optimum level of palm kernel meal in the diet of Santa Ines lambs based on the sensorial characteristics and fatty acid profile of the meat. We used 32 lambs with a starting age of 4 to 6 months and mean weight of 22 2.75 kg, kept in individual stalls. The animals were fed with Tifton-85 hay and a concentrate mixed with 0.0, 6.5, 13.0 or 19.5% of palm kernel meal based on the dry mass of the complete diet. These levels formed the treatments. Confinement lasted 80 days and on the last day the animals were fasted and slaughtered. After slaughter, carcasses were weighed and sectioned longitudinally, along the median line, into two antimeres. Half-carcasses were then sliced between the 12th and 13th ribs to collect the loin (longissimus dorsi), which was used to determine the sensorial characteristics and fatty acid profile of the meat. For sensorial evaluation, samples of meat were given to 54 judges who evaluated the tenderness, juiciness, appearance, aroma and flavor of the meat using a hedonic scale. Fatty acids were determined by gas chromatography. The addition of palm kernel meal to the diet had no effect on the sensorial characteristics of meat juiciness, appearance, aroma or flavor. However, tenderness showed a quadratic relationship with the addition of the meal to the diet. The concentration of fatty acids C12:0, C14:0 and C16:0 increased with the addition of palm kernel meal, as did the sum of medium-chain fatty acids and the atherogenicity index. Up to of 19.5% of the diet of Santa Ines lambs can be made up of palm kernel meal without causing significant changes in sensorial characteristics. However, the fatty acid profile of the meat was altered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The critically endangered black-faced lion tamarin, Leontopithecus caissara, has a restricted geographical distribution consisting of small mainland and island populations, each with distinct habitats in coastal southeastern Brazil. Necessary conservation management actions require an assessment of whether differences in habitats are reflected in use of space by the species. We studied two tamarin groups on the mainland at Sao Paulo state between August 2005 and March 2007, and compared the results with data from Superagui Island. Three home range estimators were used: minimum convex polygon (MCP), Kernel, and the new technique presented dissolved monthly polygons (DMP). These resulted, respectively, in home ranges of 345, 297, and 282 ha for the 12-month duration of the study. Spatial overlap of mainland groups was extensive, whereas temporal overlap was not, a pattern that indicates resource partitioning is an important strategy to avoid intraspecific competition. L. caissara large home ranges seem to be dynamic, with constant incorporation of new areas and abandonment of others through time. The main difference between mainland and island groups is the amount and variety of sleeping sites. A better understanding of the home range sizes, day range lengths, and territorial behavior of this species will aid in developing better management strategies for its protection. Additionally, the presented DMP protocol is a useful improvement over the MCP method as it results in more realistic home range sizes for wildlife species. Am. J. Primatol. 73: 1114-1126, 2011. (C) 2011 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was previously published by the authors that granules can either coalesce through Type I (when granules coalesce by viscous dissipation in the surface liquid layer before their surfaces touch) or Type II (when granules are slowed to a halt during rebound, after their surfaces have made contact) (AIChE J. 46 (3) (2000) 529). Based on this coalescence mechanism, a new coalescence kernel for population balance modelling of granule growth is presented. The kernel is constant such that only collisions satisfying the conditions for one of the two coalescence types are successful. One constant rate is assigned to each type of coalescence and zero is for the case of rebound. As the conditions for Types I and II coalescence are dependent on granule and binder properties, the coalescence kernel is thus physically based. Simulation results of a variety of binder and granule materials show good agreement with experimental data. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raw macadamia kernel pieces were immersed in water (specific gravity 1.00 g/cm(3)), brine (SG 1.02 g/cm(3)) or ethanol solution (SG 0.97 g/cm(3)) for 30 or 60 s, then re-dried to below 1.5% moisture (wet basis) and stored under vacuum for 0, 4 and 12 months. Flotation in water had no effect on the quality or shelf life of the kernel pieces over 12 months storage, as measured by sensory evaluation of the kernels and chemical analysis of the kernel oil. Immersion in a salt solution caused unacceptable changes in quality during storage, increasing as storage time increased. Flotation in dilute ethanol also caused unacceptable quality changes during storage. Therefore, only flotation of macadamia kernel pieces in water can be recommended for commercial operations. Microbiological concerns with such a process still need to be addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hierarchical matrix is an efficient data-sparse representation of a matrix, especially useful for large dimensional problems. It consists of low-rank subblocks leading to low memory requirements as well as inexpensive computational costs. In this work, we discuss the use of the hierarchical matrix technique in the numerical solution of a large scale eigenvalue problem arising from a finite rank discretization of an integral operator. The operator is of convolution type, it is defined through the first exponential-integral function and, hence, it is weakly singular. We develop analytical expressions for the approximate degenerate kernels and deduce error upper bounds for these approximations. Some computational results illustrating the efficiency and robustness of the approach are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A presente dissertação visa retratar a exploração do suporte do protocolo Internet versão seis (IPv6) no kernel do Linux, conjuntamente com a análise detalhada do estado da implementação dos diferentes aspectos em que se baseia o protocolo. O estudo incide na experimentação do funcionamento em geral do stack, a identificação de inconsistências deste em relação aos RFC’s respectivos, bem como a simulação laboratorial de cenários que reproduzam casos de utilização de cada uma das facilidades analisadas. O objectivo desta dissertação não é explicar o funcionamento do novo protocolo IPv6, mas antes, centrar-se essencialmente na exploração do IPv6 no kernel do Linux. Não é um documento para leigos em IPv6, no entanto, optou-se por desenvolver uma parte inicial onde é abordado o essencial do protocolo: a sua evolução até à aprovação e a sua especificação. Com base no estudo realizado, explora-se o suporte do IPv6 no Kernel do Linux, fazendo uma análise detalhada do estado de implementação dos diferentes aspectos em que se baseia o protocolo. Bem como a realização de testes de conformidade IPv6 em relação aos RFC’s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a global multiprocessor scheduling algorithm for the Linux kernel that combines the global EDF scheduler with a priority-aware work-stealing load balancing scheme, enabling parallel real-time tasks to be executed on more than one processor at a given time instant. We state that some priority inversion may actually be acceptable, provided it helps reduce contention, communication, synchronisation and coordination between parallel threads, while still guaranteeing the expected system’s predictability. Experimental results demonstrate the low scheduling overhead of the proposed approach comparatively to an existing real-time deadline-oriented scheduling class for the Linux kernel.