50 resultados para kaasun tilavuusosuus
Resumo:
Natriumhypokloriittia voidaan valmistaa kloorista ja lipeästä jatkuvatoimisessa absorberissa. Tässä työssä tutkittiin kokeellisesti, miten kaasun ja nesteen virtausnopeudet vaikuttavat täytekappalekolonnin tulvimiseen ja painehäviöön, kuinka nopeasti kloori absorboituu lipeään ja kuinka suuri hypokloriittiliuoksen kierrätys tarvitaan, ettei hypokloriitti ala hajota. Lisäksi luotiin matemaattinen malli, jolla voidaan mitoittaa jatkuvatoiminen vastavirtaperiaatteella toimiva natriumhypokloriittireaktori. Kloori–lipeäsysteemin havaittiin tulvivan suuremmilla virtausnopeuksilla kuin ilma–vesisysteemin. Tosin osa kloorista absorboituu jo ennen täytekappalekerrosta, minkä vuoksi kaasun todellinen virtausnopeus täytekappalekerroksen alaosassa on pienempi kuin mitattu arvo. Kolonnin painehäviö nousee erittäin jyrkästi tulvimispisteen läheisyydessä. Koska kloori absorboituu lähes täydellisesti ja vain kolonnin alaosa tulvii, voidaan kolonnia painehäviön kannalta operoida lähellä tulvimispistettä. Sekä mallinnuksen että koetulosten perusteella yli 99,99 % kloorista absorboituu koeolosuhteissa kahden metrin täytekappalekerroksessa. Nopea absorptio johtuu erittäin nopeasta, irreversiibelistä kloorin reaktiosta ja prosessille tyypillisestä natriumhydroksidikonversion rajoittamisesta alle 94 %:iin. Jotta varmistetaan, ettei hypokloriitti ala hajota, valmista hypokloriittiliuosta täytyy kierrättää kolonniin vähintään noin 4-kertainen määrä tuoreen lipeän syöttömäärän nähden.
Resumo:
Soodakattilan liuottajasäiliön hönkä on ongelmallinen kaasu sen sisältävän suuren vesihöyrypitoisuuden, pölyn sekä rikkiyhdisteiden vuoksi. Nykyisin sitä ei voida johtaa ilmakehään käsittelemättömänä. Tässä diplomityössä kuvatun järjestelmän avulla liuottajasäiliön hönkä hävitetään soodakattilan tulipesässä. Liuottajasäiliöstä tulevasta höngästä poistetaan kosteutta sekä kiintoaineita jäähdyttämällä sitä täytekappalepesurissa. Tähän diplomityöhön liittyen suunniteltiin koeohjelma. Kokeiden tarkoituksena on tarkastella sekä hönkäpesurin että koko järjestelmän toimintaa erilaisilla kaasun ja nesteen virtauksilla. Lisäksi koeohjelmaan otettiin mukaan höngän esipesurin, sulan hajotushöyryn ja kiertonesteen lämmönsiirtimen toiminnan vaikutus koko järjestelmään. Diplomityössä kuvattujen kokeiden tuloksia ei julkaista tässä työssä. Lopuksi työssä on tarkasteltu höngän ja kiertonesteen laadun vaikutusta täytekappalepesurin sekä koko järjestelmän toimintaan.
Resumo:
Työn tarkoituksena oli uutta kuvantamistekniikkaa hyödyntäen tutkia erilaisten tekijöiden vaikutusta kaasun dispergoitumiseen kemikaalisekoittimessa, kun kaasua sekoitetaan keskisakeaan massaan. Lisäksi työssä pyrittiin selvittämään, kuinka paljon kuitususpensioon tuotettu kaasufaasin kuplakokojakauma vaikuttaa happidelignifioinnin tulokseen. Kaasumaisten aineiden käyttäytymistä keskisakeissa kuitususpensiossa ei tarkkaan tunneta. Mikäli kaasumaisen hapen käyttäytymisestä saadaan uutta tietoa, tarjoaa tämä muun muassa uusia mahdollisuuksia kaasua sekoittavien laitteiden tuotekehityksessä. Työn kokeellinen osuus koostui kahdesta osasta, joista ensimmäisessä osassa selvitettiin sekoittimen roottorin pyörimisnopeuden, reaktorin kaasutilavuuden sekä suspension sakeuden vaikutusta muodostuvaan kaasun kuplakokojakaumaan. Työn jälkimmäisessä osassa arvioitiin yksivaiheisten keskisakeudessa tehtyjen happidelignifiointien perusteella suspensioon tuotetun kaasun kuplakokojakauman merkitystä happidelignifiointitulokseen. Kuplakokojakaumat määritettiin reaktoriin kiinnitetyllä kameralla kuvatuista valokuvista, joita otettiin sekoitustapahtuman aikana. Työn tuloksien perusteella sekoituksen voimakkuudella oli suurin vaikutus suspensioon muodostuvan kuplakokojakauman kannalta. Roottorin kierrosnopeuden kasvaessa kaasun keskimääräinen kuplakoko pieneni sekä havaittujen kuplien lukumäärää kasvoi huomattavasti. Myös suspension sakeuden kasvattamisen havaittiin vaikuttavan kuplakokoon pienentävästi. Happidelignifioinneissa saavutettiin paras kappareduktio, kun kaasun kuplakoko oli mahdollisimman pieni. Käytetty kuvantamistekniikka on tiettävästi ensimmäinen menetelmä, jolla saadaan reaaliaikaista tietoa vain muutamien kymmenien mikrometrien kokoisten kaasukuplien käyttäytymisestä oikeassa prosessitilanteessa.
Resumo:
Maakaasuputkiston huolto- ja muutostöiden yhteydessä joudutaan tyhjentämään putkisto kaasusta, jotta voidaan taata turvalliset työskentelyolosuhteet. Nykyisin putkisto tyhjennetään johtamalla kaasu ilmakehään, avaamalla putkiston ulospuhallusventtiilit. Koska maakaasu (metaani) on merkittävä kasvihuonekaasu, on ympäristövaatimusten tiukentuessa etsittävä vaihtoehtoisia keinoja vähentää päästöjä. Lisäksi, talteen otettu kaasu voidaan myydä edelleen, ja näin ollen saavuttaa säästöjä. Tässä työssä on tutkittu mahdollisuuksia komprimoida kaasu siirrettävän kompressorin avulla putkisto-osuudesta toiseen ilman, että kaasua jouduttaisiin puhaltamaan ilmakehään. Työssä päädyttiin johtopäätökseen, että siirrettävän kompressorin hankinta ei ole tällä hetkellä kannattavaa, sen korkeiden investointikustannusten vuoksi. Kuitenkin mahdollinen päästömaksu metaanille, kaasun arvon nousu, sekä tekniikan parantuminen voivat nostaa menetelmän varteenotettavaksi vaihtoehdoksi hyvinkin nopeasti. Tämän vuoksi jatkotutkimuksen tekeminen aiheesta on perusteltua.
Resumo:
Methane-rich landfill gas is generated when biodegradable organic wastes disposed of in landfills decompose under anaerobic conditions. Methane is a significant greenhouse gas, and landfills are its major source in Finland. Methane production in landfill depends on many factors such as the composition of waste and landfill conditions, and it can vary a lot temporally and spatially. Methane generation from waste can be estimated with various models. In this thesis three spreadsheet applications, a reaction equation and a triangular model for estimating the gas generation were introduced. The spreadsheet models introduced are IPCC Waste Model (2006), Metaanilaskentamalli by Jouko Petäjä of Finnish Environment Institute and LandGEM (3.02) of U.S. Environmental Protection Agency. All these are based on the first order decay (FOD) method. Gas recovery methods and gas emission measurements were also examined. Vertical wells and horizontal trenches are the most commonly used gas collection systems. Emission measurements chamber method, tracer method, soil core and isotope measurements, micrometeorological mass-balance and eddy covariance methods and gas measuring FID-technology were discussed. Methane production at Ämmässuo landfill of HSY Helsinki Region Environmental Services Authority was estimated with methane generation models and the results were compared with the volumes of collected gas. All spreadsheet models underestimated the methane generation at some point. LandGEM with default parameters and Metaanilaskentamalli with modified parameters corresponded best with the gas recovery numbers. Reason for the differences between evaluated and collected volumes could be e.g. that the parameter values of the degradable organic carbon (DOC) and the fraction of decomposable degradable organic carbon (DOCf) do not represent the real values well enough. Notable uncertainty is associated with the modelling results and model parameters. However, no simple explanation for the discovered differences can be given within this thesis.
Resumo:
Tällä hetkellä suuri osa esikäsiteltyjen jätevesilietteiden loppusijoitusvaihtoehdoista ei pysty kattamaan lopullisesti kasvavien lietemäärien loppusijoitustarvetta, mikä lisää lietteen loppusijoitusta kaatopaikoille. Kuitenkin EU:n tiukentuneen jätehuoltolainsäädännön sekä ilmastonlämpenemisen suurien haasteiden vuoksi, kaatopaikoille sijoitettavien jätteiden määrää täytyy pyrkiä vähentämään. Tämän työn tavoitteena on tutkia jätevedenpuhdistamoilta tulevan lietteen termistä kuivausta yhtenä lietteenkäsittely vaihtoehtona. Tavoitteena on selvittää voidaanko lietettä kuivaamalla saada liete paremmin hyödynnetyksi. Työssä tarkasteltiin yleisesti yhdyskuntalietteen termisessä kuivaamisessa nykyisin käytettäviä menetelmiä, sen ympäristövaikutuksia, energian tarvetta ja kustannuksia sekä siitä saatavaa hyötyä lietteen loppusijoittamisessa. Lisäksi arvioitiin kuinka kaatopaikkakaasun hyödyntäminen soveltuisi lietteen kuivauksessa tarvittavan energian tuotantoon. Työssä tehdyn selvityksen mukaan kaatopaikkakaasua voidaan hyödyntää suhteellisen helposti lämmöntuotannossa ilman merkittäviä laitosmuutoksia tai kaasun puhdistusta. Ongelmana pidettiin kaatopaikkakaasun kuljetuksia, joka on suhteellisen vaikeaa ja taloudellisesti kannattamatonta. Kuitenkin noin 10 km välimatkan säteellä kaatopaikasta sen hyödyntäminen olisi mahdollista. Työn laskelmien mukaan Suomessa hukkaan poltetulla kaatopaikkakaasulla voitaisiin kuivata noin 250 tuhatta tonnia lietettä vuosittain.
Resumo:
Teollisuuden jäähdytysjärjestelmiä tarvitaan prosessien lämpötilan ja paineen hal-litsemiseen. Vesi on käytetyin lämmönsiirtoaine hyvän saatavuutensa, halvan hin-nan ja korkean lämmönsiirtokyvyn ansiosta. Jäähdytysjärjestelmät jaetaan kolmeen päätyyppiin, joita ovat läpivirtausjäähdytys, suljettu ja avoin kiertojäähdytys. Kullakin järjestelmätyypillä on tyypilliset alatyyppinsä. Avoimella kiertojär-jestelmällä on eniten alatyyppejä, joista yleisin on jäähdytystorni. Jäähdytystorneja on kolmea tyyppiä: märkä-, kuiva ja hybriditorni. Kullakin järjestelmätyypillä on ominaiset piirteensä käyttökohteiden, ympäristövaikutusten, ohjattavuuden, investointi- ja käyttökulujen suhteen, joita tässä työssä esitellään. Työssä tutkitaan teollisuuden jäähdytysjärjestelmien esittelyn lisäksi erään ali-painekaasunpoistimen soveltuvuutta suljetun kiertojäähdytysjärjestelmän kaasun-poistoon. Suljettuun kiertojäähdytysjärjestelmään jää ilmaa täyttövaiheessa ja kul-keutuu liuenneena käytettävän jäähdytysveden mukana. Muodostuva ylikylläinen seos synnyttää veden sekaan ilmakuplia, jotka aiheuttavat korroosiota kemiallisesti ja kuluttamalla. Lisäksi kaasukuplat vievät tilavuutta nesteeltä. Tämä pienentää järjestelmän jäähdytystehoa merkittävästi, koska kaasun lämmönsiirtokyky verrat-tuna veden lämmönsiirtokykyyn on pieni. Työssä esitellään myös muita mahdolli-sia suljetun järjestelmän kaasulähteitä ja niiden aiheuttamia ongelmia. Alipainekaasunpoistimen kaasunerotustehokkuutta mitattiin jäähdytysvesinäyttei-den selkeytymisnopeudella ja lämmönsiirtimien tehon paranemisella. Kahden viikon tarkastelujaksolla selkeytymisajat paranivat 36–60 % eri mittauspaikoissa ja lämmönsiirtimien tehot paranivat 6–29 %. Järjestelmään kuitenkin jäi merkittävä määrä kaasua, vaikka laitteen käyttöä jatkettiin tarkastelujakson jälkeen, joten tavoitteisiin ei päästy. Tutkitun alipainekaasunpoistolaitteen ei todettu soveltuvan tehdasympäristöön kestämättömyyden, hankalakäyttöisyyden ja tehottomuuden takia. Tulokset kuitenkin osoittavat, että kaasunerotuksella on merkittävä vaikutus suljetun jäähdytysjärjestelmän toimivuuteen ja saavutettavaan jäähdytystehoon.
Resumo:
Paineilmaa on kutsuttu neljänneksi perushyödykkeeksi veden, sähkön ja kaasun lisäksi. Paineilman kuluttaja on usein myös sen tuottaja. EU:n alueen teollisuudessa keskimää-rin 16 % kulutetusta kokonaissähkötehosta kuluu ilmakompressoreiden käyttöön. Taa-juusmuuttajan käyttö on viime vuosikymmeninä lisääntynyt merkittävästi, kun on pyrit-ty energiatehokkaisiin ratkaisuihin esimerkiksi pumppaus- ja puhallinjärjestelmissä. Kompressorijärjestelmissä taajuusmuuttajien käyttö ei ole vielä yhtä yleistä kuin esi-merkiksi pumppukäytöissä, vaikka taajuusmuuttajan käytöllä saavutetaan useimmissa tapauksissa huomattavia etuja. Tässä työssä tutkitaan taajuusmuuttajan hyödyntämismahdollisuuksia kompressorijär-jestelmien käytönaikaisten elinkaarikustannusten optimoimisessa. Työssä selvitetään säästöpotentiaalia, ja pohditaan pyörimisnopeussäädöllä saavutettavia etuja eri komp-ressorityypeillä. Lopuksi muodostetaan elinkaarikustannusanalyysit kahdelle todelliselle teollisuuden kompressorikohteelle. Tutkimusmenetelminä ovat kirjallisuustyö sekä asi-antuntijahaastattelut teollisuudesta. Työn tavoitteena on kartoittaa taajuusmuuttajan hyödyntämispotentiaalia kompressorijärjestelmissä ja luoda pohjaa mahdolliselle jatko-tutkimukselle.
Resumo:
Kaasukaarihitsauksessa suojakaasuna käytetään yleensä argonin ja hiilidioksidin tai argonin ja heliumin seoksia. Suojakaasu vaikuttaa useisiin hitsausominaisuuksiin, jotka puolestaan vaikuttavat hitsauksen laatuun ja tuottavuuteen. Automaattisella suojakaasun tunnistuksella ja virtausmäärän mittauksella voitaisiin tehdä hitsauksesta paitsi käyttäjän kannalta yksinkertaisempaa, myös laadukkaampaa. Työn tavoite on löytää mahdollisimman edullinen ja kuitenkin mahdollisimman tarkasti kaasuseoksia tunnistava menetelmä, jota voitaisiin hyödyntää MIG/MAG-hitsauskoneeseen sisäänrakennettuna. Selvä etu on, jos menetelmällä voidaan mitata myös kaasun virtausmäärä. Äänennopeus kaasumaisessa väliaineessa on aineen atomi- ja molekyylirakenteesta ja lämpötilasta riippuva ominaisuus, joka voidaan mitata melko edullisesti. Äänennopeuden määritys perustuu ääniaallon kulkuajan mittaamiseen tunnetun pituisella matkalla. Kaasun virtausnopeus on laskettavissa myötä- ja vastavirtaan mitattujen kulkuaikojen erotuksen avulla. Rakennettu mittauslaitteisto koostuu kahdesta ultraäänimuuntimesta, joiden halkaisija on 10 mm ja jotka toimivat sekä lähettimenä että vastaanottimena. Muuntimet ovat 140 mm:n etäisyydellä toisistaan virtauskanavassa, jossa suojakaasu virtaa yhdensuuntaisesti äänen kanssa. Virtauskanava on putki, jossa on käytetty elastisia materiaaleja, jotta ääniaaltojen eteneminen kanavan runkoa pitkin minimoituisi. Kehitetty algoritmi etsii kahden lähetetyn 40 kHz:n taajuisen kanttiaaltopulssin aiheuttaman vasteen perusteella ääniaallon saapumisajanhetken. Useiden mittausten, tulosten lajittelun ja suodatuksen jälkeen tuntemattomalle kaasulle lasketaan lämpötilakompensoitu vertailuluku. Tuntematon kaasu tunnistetaan vertailemalla lukua tunnettujen kaasuseosten mitattuihin vertailulukuihin. Laitteisto tunnistaa seokset, joissa heliumin osuus argonissa on enintään 50 %. Hiilidioksidia sisältävät argonin seokset puolestaan tunnistetaan puhtaaseen hiilidioksidiin asti jopa kahden prosenttiyksikön tarkkuudella. Kaasun tilavuusvirtausmittauksen tarkkuus on noin 1,0 l/min.
Resumo:
Tässä kandidaatintyössä tarkastellaan laboratoriokäyttöön soveltuvan syklonin suunnittelussa huomioitavia asioita. Työn kokeellisessa osuudessa tarkastellaan aiemmin nesteen ja kiintoaineen erotukseen käytetyn hydrosyklonin soveltuvuutta kaasun ja kiintoaineen erotukseen. Syklonit ovat laajasti käytössä olevia kaasun ja kiintoaineen erotukseen suunniteltuja laitteita. Yksinkertainen, ilman liikkuvia osia toteutettu rakenne tekee sykloneista kustannuksiltaan alhaisen ja toimintavarman ratkaisun moniin teollisuuden ilmanpuhdistustarpeisiin. Yleinen käyttökohde on esimerkiksi poistoilman esipuhdistus ennen pienhiukkaskeräintä. Työn kirjallisuusosassa käydään läpi suureet, joiden avulla syklonien toimintaa voidaan arvioida ja vertailla. Lisäksi esitellään yleisimmät syklonin rakenneratkaisut sekä syklonin erot ja yhteneväisyydet muiden erotuslaitteistojen kanssa. Lopuksi käydään läpi, miten erilaiset käyttöolosuhteet tai syklonin ominaisuudet vaikuttavat syklonin toimintaan ja tehokkuuteen. Kokeellisessa osassa esitellään menetelmiä laboratoriokäyttöön soveltuvan syklonin mittasuhteiden määrittämiseksi perustuen laboratoriosyklonille asetettuihin vaatimuksiin ja ennalta määrättyyn halkaisijaan. Laskettuja arvoja vertaillaan mainittuun hydrosykloniin. Lisäksi analysoidaan hydrosyklonin tehokkuutta kaasun ja kiintoaineen erotuksessa sen käsittelemän kalkin partikkelikokojakaumien perusteella. Kokeellisen osan tuloksista havaitaan, että hydrosykloni ei ilman muutoksia suoraan sovellu kiintoaineen ja kaasun erotukseen. Suurimmaksi ongelmaksi tämän työn yhteydessä nousee kiintoaineen tarttuminen laitteiston sisään staattisen sähkön ja liian pienen virtausnopeuden vaikutuksesta. Virtausnopeutta sisääntuloputkessa voitaisiin kasvattaa sen halkaisijaa pienentämällä tai tilavuusvirtaa kasvattamalla. Syklonin muokkaaminen paremmin vastaamaan standardimittasuhteita parantaisi todennäköisesti virtausprofiileja laitteiston sisällä. Lisäksi rakennemateriaalin vaihtaminen metalliin olisi suositeltavaa staattisen sähkön eliminoimiseksi.
Resumo:
Uudellamaalla voi olla johtava rooli Suomessa ja maailmassa arktisessa meriteknologiassa myös jatkossa. Tämä edellyttää muun muassa koulutuksen, tutkimuksen ja muun toiminnan suuntaamista palvelemaan arktisen meriteknologian kysyntää. Hankkeessa pyrittiin määrittämään arktisen meriteknologian sisältöä ja käsitettä, tarkastelemaan mahdollisuuksia etenkin Uudenmaan ja muun Suomen pk-yritysten näkökulmasta, tunnistamaan ”miniklustereita” muun muassa kansainvälistymisinstrumenttien soveltamiseksi, tunnistamaan koulutustarpeita ja löytämään suosituksia valtakunnantason politiikalle. Ennakoinnin ydinmenetelmänä oli Delfoi-prosessi, jota täydensi tulevaisuusverstas ja viestintäympäristön käyttö Internetissä osoitteessa www.amtuusimaa.net. Toimintaympäristön muutoksia arvioitiin vuoteen 2030 ja tarvittavia kehittämistoimia viiden vuoden aikajänteellä. Tulosten perusteella ”Arktinen meriteknologia on mereen liittyvää teknologiaa merellä, ilmassa, meren alla tai maalla. Teknologia liittyy etenkin kaasun- ja öljyntuotantoon ja kaivostoimintaan. Teknologia toimii arktisissa olosuhteissa ja se on etenkin 1) kylmän, lumen ja jään kestävää, 2) luontoa vähän rasittavaa, 3) teknologia toimii pitkien etäisyyksien toimintaympäristössä. Hankkeessa testattiin noin 50 asiantuntijoiden kehittämää hankealoitetta. Alustavasti esitetään toteutettavaksi seuraavat hankkeet, jotka pääasiassa perustuvat Delfoi-paneelin 2. haastattelukierroksen perusteella tehtyyn arvottamiseen. ”Hard / kovat kärjet” – vaatii päätöksiä laajalla rintamalla ja ”isännän otetta” (muun muassa valtion) ja investointeja: Offshore-koulutuksen kehittäminen, Öljyntorjuntalaboratorion perustaminen ja siihen tukeutuvan koulutus- ja kehittämistoiminnan edistäminen, Materiaalien kylmässäkäyttäytymisen tutkimusohjelma ja testiolosuhteiden luominen, AMT-teknologian esille tuominen viestinnässä, Yhteistyömahdollisuudet tuotannossa suomalaisten ja venäläisten toimijoiden kanssa -selvitys ja valtion ja suuryhtiöiden strategioiden tarkistus ja liittoutuminen relevanttien toimijoiden kanssa. ”Medium-hankkeissa” muun muassa projektirahoituksen oikealla ja ohjelmallisella suuntaamisella saadaan merkittäviä tuloksia aikaan - korostavat ELY:n, oppilaitosten/kuntien/maakuntien ja yliopiston roolia: Telakoiden tuottavuuden nosto (edellyttää tilauskuormaa, aloite kuuluu myös ”hard” ryhmään), Projektiosaamisen vahvistaminen, Arktisen meriteknologian jäämallilaboratorio suureksi ja kansainväliseksi, Jäämanagement toiminnan koulutus ja simulaattori, Työnjohtotason koulutus ja Osaamis- ja koulutustarpeiden ennakointi. ”Soft–hankkeet” korostavat muun muassa kehittämisorganisaatioiden, yritysten ja yhdistysten roolia: Kronstadin telakkayhteistyöhön ja teollisuuspuistokonseptiin varautuminen, Alan keksintöjen ja keksijöiden esille nostaminen, Meri- ja kaivosteollisuuden yhteisten mahdollisuuksien etsiminen ja Viestintä / ennakointiraportin tulosten toimeenpano viestinnän keinoin. Kiistanalaisista merkittäviä mahdollisuuksia sisältävistä teemoista voidaan nostaa muun muassa seuraavat: Arktisen meriteknologian klusterin laajentaminen Ouluun ja Pietariin, Arktiset risteilyalukset ja Arktisen sisävesiliikenteen laivat ja järjestelmät.
Resumo:
Harmful sulfur dioxide (SO2) emissions from power plants have increasingly been restricted since the 1970’s. Circulating fluidized bed (CFB) scrubber is a dry flue gas desulfurization method of absorbing SO2 out of the flue gas with sorbent. In current commercial plants, the used sorbent is commercial or on-site hydrated calcium hydroxide. The CFB scrubber process is characterized by a close but adequate approach to the flue gas saturation temperature that is achieved by spraying water to the absorber followed by a particulate control device. Very high SO2 removal is achieved along with a dry byproduct that is continuously recirculated back to the absorber for enhanced sorbent utilization. The aim of this work is to develop a method that would characterize the reactivity of sorbents used in CFB scrubbers and to conclude how different process parameters and sorbent properties affect the sulfur absorption. The developed characterization method is based on a fixed bed of sorbent and inert silica sand, through which an SO2 containing gas mixture is led. The reaction occurs in the bed and the SO2 concentration in the outlet as a function of time, a breakthrough curve, is obtained from the analyzer. Reactivity of the sorbents are evaluated by the absorbed sulfur amount. Results suggest that out of process parameters, lower SO2 concentration, lower temperature and higher moisture content enhance the desulfurization. Between different sorbents, specific surface area seems to be the most significant parameter. Large surface area linearly leads to more efficient desulfurization. Overall, the solid conversion levels in the tests were very low creating uncertainty to the validity of the results. New desing is being planned to overcome the problems of the device.
Resumo:
Sähköenergiankulutuksella on suuri merkitys kryogeenisessa ilman tislausprosessissa. Sähköenergiankulutus määrittää pääosan tuotetun kaasun tuotantokustannuksista, koska raaka-aine eli ympäröivä ilmakehä ei aiheuta taloudellisia kuluja. Vesijäähdytysjärjestelmä vaikuttaa tislausprosessin tehokkuuteen merkittävästi. Jäähdytysveden lämpötilalla on oleellinen merkitys tuotettujen kaasujen massavirtoihin ja kulutettavaan energiaan. Lisäksi jäähdytysveden lämpötila vaikuttaa laitoksen käytettävyyteen. Jäähdytysjärjestelmän tehokkuuteen vaikuttavat useat eri tekijät. Lähtökohtana lämmönsiirtoon vaikuttavista tekijöistä on saatavan jäähdytysveden lämpötila. Lämmönsiirtimien mitoituksella, likaantumisella ja virtausnopeuksilla on myös oleellinen merkitys ilman tislausprosessin lämmönsiirrossa. Tässä raportissa on kuvattu kryogeeninen ilman tislausprosessi ja syvennytty prosessin vesijäähdytysjärjestelmään. Raportissa lämmönsiirto pohjautuu ainoastaan laitoksen vesilämmönsiirtimiin ulkoisessa ja sisäisessä kierrossa. Raportti sisältää prosessikuvauksen, tutkimustietoa jäähdytysjärjestelmästä ja lämmönsiirrosta, koejärjestelyjen tulokset ja päätelmiä laitoksen jäähdytysjärjestelmän ja tuotannon yhteyksistä. Raportti perustuu kattavaan lähdemateriaaliin.
Resumo:
Työssä tutkittiin Salossa sijaitsevan Korvenmäen kaatopaikan kaasunkeräysjärjestelmää. Tavoitteena oli selvittää kaatopaikkakaasun talteenoton merkittävimmät haasteet, löytää ratkaisuja ongelmiin ja hajuhaittojen vähentämiseen sekä arvioida keräysjärjestelmän parannusten ja kaatopaikalle tulevan pintarakenteen vaikutus talteenottoon ja hajuhaittoihin. Korvenmäen kaatopaikalla on käytössä vaakakeräysjärjestelmä, jonka merkittävimpiä ongelmia ovat olleet kaatopaikkakaasun matala talteenottoaste, happipitoisuuden nousu, järjestelmän hankala säädettävyys sekä kaatopaikalla ja ympäristössä havaitut hajuhaitat. Muodostuvan ja karkaavan kaatopaikkakaasun määrää arvioitiin Jouko Petäjän metaanilaskentamallin avulla. Tulosten perusteella kaasua muodostuu runsaasti, mutta suurin osa siitä pääsee karkaamaan ympäristöön, sillä arvioitu kaatopaikkakaasun talteenottoaste on tällä hetkellä vain 11 %. Kaasujen käsittelykäytäntöjä suomalaisilla kaatopaikoilla selvitettiin kyselytutkimuksella. Tutkimuksen mukaan kaasunkeräyksen ongelmat ja hajuhaitat ovat yleisiä, mutta erilaisilla toimenpiteillä niitä voidaan huomattavasti vähentää. Korvenmäelle suositeltavia kehitystoimia ovat kaasulinjoihin yhdistettyjen suotoveden keräys- ja tarkkailukaivojen tiivistäminen, vanhojen vaakalinjojen kunnon tarkistus ja korjaus sekä pystykaivojen asentaminen kaasunkeräyksen tehostamiseksi. Pintarakenne tulee valmistuttuaan vähentämään karkaavan kaasun ja kaasulinjoihin imeytyvän ilman määrää. Hajuhaittojen hallinnassa tärkeintä on toimiva kaasunkeräys, mutta lisäksi suositellaan rikkivetyä hapettavien päivittäispeittomateriaalien levittämistä kaatopaikan pinnalle. Kehitystoimenpiteiden myötä kaatopaikkakaasun talteenottoaste tulee paranemaan ja hajuhaitat vähenevät. Kerättävän kaasumäärän kasvaessa mikroturbiinilaitoksen kapasiteettia voidaan lisätä, jotta kaasu saadaan mahdollisimman tehokkaasti hyödynnettyä energiana.
Resumo:
Tämän diplomityön tarkoituksena oli tarkastella biokaasun liikennekäyttöön tarvittavia teknologisia ratkaisuja ja tehdä kustannusvertailua erilaisten jakeluvaihtoehtojen välillä Mikkelin ympäristön case-tapauksessa. Työn teoriaosassa on esitelty teknologisia vaihtoehtoja liikennebiokaasun jakelulle sekä eri teknologioiden kustannuksia. Tietämys eri teknologiavaihtoehdoista ja niiden hinnoista on muodostettu kirjallisuuskatsauksen, asiantuntijahaastatteluiden sekä saatujen tarjousten perusteella. Työn empiriaosassa on tarkasteltu kolmen eri jakeluskenaarion kustannuksia käyttäen elinkaarikustannuslaskentaa, sekä toimintoperusteista kustannuslaskentaa. Liikennebiokaasun jakelun kustannuksiksi työn case-tapauksissa saatiin jakelutavasta riippuen 0,37 €/kg – 1,02 €/kg (2,64 snt/kWh – 7,29 snt/kWh). Edullisin vaihtoehto liikennebiokaasun jakeluun on työn perusteella myydä tuotettu kaasu tuotantolaitoksella. Jos kaasua siirretään tankattavaksi tytärasemalle, on vaihtoehtoina paineistettu kaasu siirtokontein, nesteytetty kaasu trailerilla tai putkisiirto. Halvin siirtokeino tämän työn skenaarioissa oli kaasun putkisiirto.