997 resultados para island ecosystems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mangrove forests are best developed on tropical shorelines where there is an extensive intertidal zone, with an abundant supply of fine-grained sediment. It receives a mixture of liable and refractory organic and inorganic phosphorus compounds from the overlying water and the surrounding landmasses. Organic phosphorus is not available for mangrove plant nutrition. While inorganic phosphate represents the largest potential pool of plant-available and which are bound in the form of Ca, Fe and Al phosphate. It deals with the scientific investigations on mangrove systems in the Kerala coastline and to investigate nutrient distribution of mangrove ecosystems of greater Cochin area. It discusses the description of study areas such as Murikkumpadam-Vypeen Island and Aroor. Then it deals with the spatial and seasonal distribution of dissolved ammonia, nitrite, nitrate, inorganic phosphate, organic phosphate and the total phosphorus in surface waters of mangrove fringed creeks. Then it discusses the geochemical compositions of mangrove-fringed sediments and also the chemical speciation of phosphorus in sediment cores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this present study macro benthos of minicoy island lakshadweep, an attempt has been made to study the distribution and community structure of benthos at different ecosystems. The main objectives of the study include the identification of benthic fauna, their distribution and composition, standing stock, qualitative and quantitative nature in relation to hydrography,seasons and sediment texture, community structure analysis and tropic relationships. This base line study at Minicoy,thus establishes that the benthos of sea grass and mangrove ecosystems(nursery grounds) determines the richness and diversity of demersal fish fauna at the nearby lagoon and reef areas to a great extent. Any serious stress on these ecosystems may lead to disappearance of certain fish species in the nearby future

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This case study on the Sifnos island, Greece, assesses the main factors controlling vegetation succession following crop abandonment and describes the vegetation dynamics of maquis and phrygana formations in relation to alternative theories of secondary succession. Field survey data were collected and analysed at community as well as species level. The results show that vegetation succession on abandoned crop fields is determined by the combined effects of grazing intensity, soil and geological characteristics and time. The analysis determines the quantitative grazing thresholds that modify the successional pathway. Light grazing leads to dominance by maquis vegetation while overgrazing leads to phryganic vegetation. The proposed model shows that vegetation succession following crop abandonment is a complex multi-factor process where the final or the stable stage of the process is not predefined but depends on the factors affecting succession. An example of the use of succession models and disturbance thresholds as a policy assessment tool is presented by evaluating the likely vegetation impacts of the recent reform of the Common Agricultural Policy on Sifnos island over a 20-30-year time horizon. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dead mammal (i.e. cadaver) is a high quality resource (narrow carbon:nitrogen ratio, high water content) that releases an intense, localised pulse of carbon and nutrients into the soil upon decomposition. Despite the fact that as much as 5,000 kg of cadaver can be introduced to a square kilometre of terrestrial ecosystem each year, cadaver decomposition remains a neglected microsere. Here we review the processes associated with the introduction of cadaver-derived carbon and nutrients into soil from forensic and ecological settings to show that cadaver decomposition can have a greater, albeit localised, effect on belowground ecology than plant and faecal resources. Cadaveric materials are rapidly introduced to belowground floral and faunal communities, which results in the formation of a highly concentrated island of fertility, or cadaver decomposition island (CDI). CDIs are associated with increased soil microbial biomass, microbial activity (C mineralisation) and nematode abundance. Each CDI is an ephemeral natural disturbance that, in addition to releasing energy and nutrients to the wider ecosystem, acts as a hub by receiving these materials in the form of dead insects, exuvia and puparia, faecal matter (from scavengers, grazers and predators) and feathers (from avian scavengers and predators). As such, CDIs contribute to landscape heterogeneity. Furthermore, CDIs are a specialised habitat for a number of flies, beetles and pioneer vegetation, which enhances biodiversity in terrestrial ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

■ Human well-being has several key components: the basic material needs for a good life, freedom and choice, health, good social relations, and personal security. Well-being exists on a continuum with poverty, which has been defined as"pronounced deprivation in well-being."
■ How well-being and ill-being, or poverty, are expressed and experienced is context- and situation-dependent, reflecting local social and personal factors such as geography, ecology, age, gender,and culture.These concepts are complex and value-laden.
Ecosystems are essential for human well-being through their provisioning, regulating, cultural, and supporting services. Evidence in recent decades of escalating human impacts. on ecological systems worldwide raises concerns about the consequences of ecosystem changes for human well-being.
■ Human well-being can be enhanced through sustainable human interaction with ecosystems with the support of appropriate instruments, institutions, organizations, and technology. creation of these through participation and transparency may contribute to people's freedoms and choices and to increased economic, social,and ecological security.
■ Some believe that the problems from the depletion and degradation of ecological capital can be largely overcome by the substitution of physical and human capital. Others believe that there are more significant limits to such substitutions.The scope for substitutions varies by socioeconomic status.
■ We identify direct and indirect pathways between ecosystem change and human well-being,whether it be positive or negative.lndirect effects are characterized by more complex webs of causation, involving social, economic, and political threads. Threshold points exist beyond which rapid changes to human well-being can occur.
■ Indigent poorly resourced, and otherwise disadvantaged communities are generally the most vulnerable to adverse ecosystem change. Spirals, both positive and negative, can occur for any population, but the poor are more vulnerable.      
■ Functioning institutions are vital to enable equitable access to ecosystem services. lnstitutions sometimes fail or remain undeveloped because of powerful individuals or groups. Bodies that mediate the distribution of goods and services may also be appropriated for the benefit of powerful minorities.
■ For poor people, the greatest gains in well-being will occur through more equitable and secure access to ecosystem services. In the long run, the rich can contribute greatly to human well-being by reducing their substantial impacts on ecosystems and by facilitating greater access to ecosystem services by the poor.
■ We argue ecological security warrants recognition as a sixth freedom of equal weight with participative freedom, economic   facilities, social opportunities, transparency guarantees, and protective security.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simultaneously analysing demographic processes of small mammals living in different ecological contexts may help to understand mechanisms that influence the growth and decline of these populations. The size and demography of swamp antechinus (Antechinus minimus) populations located in a coastal mainland habitat and on a small offshore island in south-eastern Australia were investigated. Large demographic differences occurred between the two ecosystems, with the island population density often 100 times greater than that on the mainland. The swamp antechinus in the mainland habitat was influenced by extrinsic climatic forces, with juvenile recruitment, individual body mass and overall population size being affected by rainfall, a factor likely to influence food availability for the species. However, the island population did not appear to be affected by drought to the same degree where allochthonous marine nutrient inputs may have offset any drought-induced reduction in primary production. Significantly greater juvenile recruitment in the island habitats combined with restricted emigration and potentially reduced predation and interspecific competition are likely to be responsible for the high population densities on the island. Although island populations appear robust, future conservation efforts should focus on mainland populations given the genetic deficiencies in the island populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complexity is increasingly the hallmark in environmental management practices of sandy shorelines. This arises primarily from meeting growing public demands (e.g., real estate, recreation) whilst reconciling economic demands with expectations of coastal users who have modern conservation ethics. Ideally, shoreline management is underpinned by empirical data, but selecting ecologically-meaningful metrics to accurately measure the condition of systems, and the ecological effects of human activities, is a complex task. Here we construct a framework for metric selection, considering six categories of issues that authorities commonly address: erosion; habitat loss; recreation; fishing; pollution (litter and chemical contaminants); and wildlife conservation. Possible metrics were scored in terms of their ability to reflect environmental change, and against criteria that are widely used for judging the performance of ecological indicators (i.e., sensitivity, practicability, costs, and public appeal). From this analysis, four types of broadly applicable metrics that also performed very well against the indicator criteria emerged: 1.) traits of bird populations and assemblages (e.g., abundance, diversity, distributions, habitat use); 2.) breeding/reproductive performance sensu lato (especially relevant for birds and turtles nesting on beaches and in dunes, but equally applicable to invertebrates and plants); 3.) population parameters and distributions of vertebrates associated primarily with dunes and the supralittoral beach zone (traditionally focused on birds and turtles, but expandable to mammals); 4.) compound measurements of the abundance/cover/biomass of biota (plants, invertebrates, vertebrates) at both the population and assemblage level. Local constraints (i.e., the absence of birds in highly degraded urban settings or lack of dunes on bluff-backed beaches) and particular issues may require alternatives. Metrics - if selected and applied correctly - provide empirical evidence of environmental condition and change, but often do not reflect deeper environmental values per se. Yet, values remain poorly articulated for many beach systems; this calls for a comprehensive identification of environmental values and the development of targeted programs to conserve these values on sandy shorelines globally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invasive rodent species have established on 80% of the world's islands causing significant damage to island environments. Insular ecosystems support proportionally more biodiversity than comparative mainland areas, highlighting them as critical for global biodiversity conservation. Few techniques currently exist to adequately detect, with high confidence, species that are trap-adverse such as the black rat, Rattus rattus, in high conservation priority areas where multiple non-target species persist. This study investigates the effectiveness of camera trapping for monitoring invasive rodents in high conservation areas, and the influence of habitat features and density of colonial-nesting seabirds on rodent relative activity levels to provide insights into their potential impacts. A total of 276 camera sites were established and left in situ for 8 days. Identified species were recorded in discrete 15 min intervals, referred to as 'events'. In total, 19 804 events were recorded. From these, 31 species were identified comprising 25 native species and six introduced. Two introduced rodent species were detected: the black rat (90% of sites), and house mouse Mus musculus (56% of sites). Rodent activity of both black rats and house mice were positively associated with the structural density of habitats. Density of seabird burrows was not strongly associated with relative activity levels of rodents, yet rodents were still present in these areas. Camera trapping enabled a large number of rodents to be detected with confidence in site-specific absences and high resolution to quantify relative activity levels. This method enables detection of multiple species simultaneously with low impact (for both target and non-target individuals); an ideal strategy for monitoring trap-adverse invasive rodents in high conservation areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Máster en Oceanografía

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global warming and ocean acidification, due to rising atmospheric levels of CO2, represent an actual threat to terrestrial and marine environments. Since Industrial Revolution, in less of 250 years, pH of surface seawater decreased on average of 0.1 unit, and is expected to further decreases of approximately 0.3-0.4 units by the end of this century. Naturally acidified marine areas, such as CO2 vent systems at the Ischia Island, allow to study acclimatation and adaptation of individual species as well as the structure of communities, and ecosystems to OA. The main aim of this thesis was to study how hard bottom sublittoral benthic assemblages changed trough time along a pH gradient. For this purpose, the temporal dynamics of mature assemblages established on artificial substrates (volcanic tiles) over a 3 year- period were analysed. Our results revealed how composition and dynamics of the community were altered and highly simplified at different level of seawater acidification. In fact, extreme low values of pH (approximately 6.9), affected strongly the assemblages, reducing diversity both in terms of taxa and functional groups, respect to lower acidification levels (mean pH 7.8) and ambient conditions (8.1 unit). Temporal variation was observed in terms of species composition but not in functional groups. Variability was related to species belonging to the same functional group, suggesting the occurrence of functional redundancy. Therefore, the analysis of functional groups kept information on the structure, but lost information on species diversity and dynamics. Decreasing in ocean pH is only one of many future global changes that will occur at the end of this century (increase of ocean temperature, sea level rise, eutrophication etc.). The interaction between these factors and OA could exacerbate the community and ecosystem effects showed by this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification leads to changes in marine carbonate chemistry that are predicted to cause a decline in future coral reef calcification. Several laboratory and mesocosm experiments have described calcification responses of species and communities to increasing CO2. The few in situ studies on natural coral reefs that have been carried out to date have shown a direct relationship between aragonite saturation state (Omega arag) and net community calcification (Gnet). However, these studies have been performed over a limited range of Omega arag values, where extrapolation outside the observational range is required to predict future changes in coral reef calcification. We measured extreme diurnal variability in carbonate chemistry within a reef flat in the southern Great Barrier Reef, Australia. Omega arag varied between 1.1 and 6.5, thus exceeding the magnitude of change expected this century in open ocean subtropical/tropical waters. The observed variability comes about through biological activity on the reef, where changes to the carbonate chemistry are enhanced at low tide when reef flat waters are isolated from open ocean water. We define a relationship between net community calcification and Omega arag, using our in situ measurements. We find net community calcification to be linearly related to Omega arag, while temperature and nutrients had no significant effect on Gnet. Using our relationship between Gnet and Omega arag, we predict that net community calcification will decline by 55% of its preindustrial value by the end of the century. It is not known at this stage whether exposure to large variability in carbonate chemistry will make reef flat organisms more or less vulnerable to the non-calcifying physiological effects of increasing ocean CO2 and future laboratory studies will need to incorporate this natural variability to address this question.