282 resultados para intervertebal foramen
Resumo:
The aim of this study was to evaluate the intraexaminer agreement in the detection of the mandibular canal roof (MCR) and mental foramen (MF) in panoramic radiographs. Forty panoramic radiographs of edentulous patients were used. Two calibrated examiners (A and B) read the images 2 times, for both sides independently, under blind conditions. The interval between the readings was 10 days. The intraexaminer agreement in the interpretation of MCR and MF was performed by kappa statistics with linear weighting (x). The intraexaminer agreement for the detection of MCR, in the left side, was good for both examiners (A: kappa = 0.67; B: kappa = 0.71). Related to the right side, it was found to be kappa = 0.47 and kappa = 0.62, respectively to A and B. The intraexaminer agreement for the detection of MF was good for both examiners interpreting the left side (A: kappa = 0.61; B: kappa = 0.63), and in relation to the right side, it was moderate (A: kappa = 0.51) and fair (B: kappa = 0.38). The intraexaminer agreement in the detection of MCR was good and from good to fair in the detection of MF.
Resumo:
The authors verified the anatomical location of the mandibular foramen, lingula and antilingula in dry mandibles, aiming to obtain information that could be used when performing mandibular osteotomies. Forty-four mandibles (88 sides) were evaluated. The distances were measured using a sliding calliper, with the mandibles fixed in a reproducible position. Results showed that the mandibular foramen is on average 5.82 mm below the lingula. Regarding the statistical comparison between the mandibular foramen entrance and the anti lingula position, there is no correlation between the position of those two structures in the studied sample. The mandibular foramen is slightly posterior in relation to the centre of the ramus. The lingula is an important anatomic landmark for ramus surgery, and for determining the distance to the mandibular foramen entrance. The use of the antilingula as a landmark for the position of the vertical ramus osteotomy is not recommended.
Resumo:
The aim of this study was to analyze the anatomotopographic location of the mandibular foramen in the right and left ramus, and to verify the influence of the amount of dental alveoli on the foramen position. Thirty-five adult dry human mandibles of Araraquara Dental School, UNESP - São Paulo State University were assessed, with or without dental alveoli. Measurements were obtained, using a ruler and a digital caliper. The following distances were measured: Fl - distance between the lowest point of the mandibular incisure and the mandibular foramen (F point); FB - distance between the mandibular base and F point; FP - distance between the posterior margin of the ramus and F point; FA - distance between the anterior margin of the ramus and F point; FT - distance between the apex of the retromolar trigone and F point. The Mann-Whitney test was used to compare each measurement according to hemi-arch, and the Kruskal-Wallis test was used to analyze the influence of the presence of alveoli on the measures. For multiple comparison, Dunn's method was used. There was no statistically significant difference in the location of the mandibular foramen when compared to the right and left hemi-arches. The amount of dental alveoli influenced, significantly, only on FA and FP distances. Thus, it was concluded that the right and left mandibular ramus showed symmetry in the location of the mandibular foramen, and the amount of alveoli influenced on the distances of the anterior and posterior margins of the mandibular rams, in relation to the mandibular foramen.
Resumo:
Inferior Alveolar Nerve (IAN) transposition is an option for prosthetic rehabilitation in cases of moderate or even severe bone reabsorption for patients that do not tolerate removable dentures. The aim of the present report is to describe an inferior alveolar nerve transposition with involvement of the mental foramen for implant placement. The surgical procedure was performed under local anesthesia, by the inferior alveolar, lingual and buccal nerve blocking technique. Centripetal osteotomy was performed, and bone tissue was removed, leaving the nerve tissue free in the foramen area. After that, transsection of the incisor nerve was performed, and lateral osteotomy was started from the buccal direction, toward the trajectory of the IAN. The procedure was concluded, by making use of a delicate resin spatula to manipulate the vascular-nervous bundle. The drilling sequence for placing the dental implants was performed, and autogenous bone was harvested using a bone collector attached to the surgical suction appliance. After the implants were placed, the bone tissue previously collected during the osteotomies and drilling processes was placed in order to protect the IAN from contact with the implants. The surgical protocol for inferior alveolar nerve transposition, followed by implant placement presented excellent results, with complete recovery of the sensitivity, seven months after the surgical procedure.
Resumo:
The aim of this study was to evaluate the diagnostic agreement of conventional panoramic radiographs and their inverted scanned images in the detection of the mandibular canal and mental foramen. A total of 77 panoramic radiographs obtained from the files of totally edentulous patients were used. Digitization was done by means of a scanner with brightness and contrast adjustment, as well as image inversion. The extension of mandibular canal was divided into anterior, middle, and posterior regions, and the presence of a radiopaque line that characterized the mandibular canal was classified according to a 5-point confidence scale. The mental foramen was classified in 4 types: continuous, separated, diffuse, and unidentified. Both conventional and inverted scanned panoramic radiographs were evaluated by 3 calibrated implantologists at 2 distinct moments with a minimum interval of 10 days between them. Intraexaminer agreement was evaluated by Kappa statistics by point and by 95% confidence interval. Because the intraexaminer level of agreement was low, interexaminer agreements could not be carried out. The results showed a substantial (in 2 situations), moderate (in 16 situations), and fair (in 18 situations) intraexaminer agreement for mandibular canal and a substantial (in 1 situation), fair (in 1 situation), and moderate (in 10 situations) intraeaminer agreement for mental foramen. There were no statistically significant differences in most instances. In conclusion, the diagnostic agreement of conventional and inverted scanned panoramic radiographs for detection of mandibular canal and mental foramen was low.
Resumo:
Aim: the aim of this study is to assess and locate the Foramen of Huschke. Study design: anatomical. Material and Method: using contrast material like gutta-percha and barium sulfate, through extraoral radiographs, such as panoramic, submental vertex and corrected saggital linear Temporal Mandibular Joint tomograms in four skulls where we clinically checked the existence of foramen of Huschke. Results: The results proved that the foramen of Huschke can be observed in skulls submitted to contrast using radiographic techniques.
Resumo:
The objective of this study was to determine the mean distance between the infraorbital foramen and the infraorbital margin, as well as the mean distance between the infraorbital foramen and the piriform aperture on both sides of dry human skulls, with the aim of improving the efficiency in clinical situations, such as surgery and anesthetic procedures. Two hundred ninety-five skulls were used (590 sides), located in the Frankfurt Plane through a craniostat. The measurements were collected by two distinct operators, with a dry tip compass and carried to a caliper. The general mean obtained between the infraorbital foramen and the infraorbital margin was 6.37 mm (±1.69 mm), with a mean of 6,28 mm (±1.79 mm) on the right side and 6.45 mm (±1.76 mm) on the left side. The general mean obtained between the infraorbital foramen and the piriform aperture was 17.67 mm (±1.95 mm), being 17.75 mm (±2.10 mm) on the right side and 17.60 mm (±2.04 mm) on the left side. There were statistically significant differences between the right and left distances of the infraorbital foramen and the infraorbital margin, verified by the Student's-t test. The results of this study allow a more precise location of the infraorbital foramen, particularly as regards the infraorbital margin, since this distance is of relevant importance as a repair point during surgical procedures involving this anatomical structure.
Morphological characteristics of foramen of Vesalius and its relationship with clinical implications
Resumo:
The aim of this study was to evaluate the incidence as well morphometry of the foramen of Vesalius in human skulls and analyzing their clinical importance. Dry human skulls (n = 80) and with gender distinction were used (40 male and 40 female). The results demonstrates an total incidence of 40%, 13.75% skulls with the bilateral presence of the foramen, 26.25% skulls with the unilateral presence of the foramen, 31.25% skulls with foramen only of the right side, 22.50% skulls with foramen only of the left side, 25% masculine skulls with at least 1 foramen and 52.25% skulls with at least 1 foramen. The morphometry showed an average diameter of 1.457 ± 1.043 mm on the right and 1592 ± 0938 mm to the left. The average distance to the foramen ovale was 1.853 ± 0.303 mm on the right side and 2.464 ± 0.311 mm on the left. It can be concluded that a deepened anatomical study of the foramen of Vesalius collaborates not only for anatomical knowledge of this structure, but also in clinical situations involving this foramen.
Resumo:
Background. The retromolar canal (RMC) is an anatomical variation that can cause complications in dental procedures. Method. The RMC was evaluated according to age, sex, and presence of accessory mandibular canal and accessory mental foramen, on both sides in 500 panoramic radiographs, belonging to individuals at the age of 7 to 20 years. The associations of interest were studied through Fisher's Exact Test and Pearson's Chi-Square Test, and the correlation was studied through Pearson's Correlation Coefficient (r). The significance level used was 5%. Results. The RMC was observed in 44 radiographs (8.8%), and out of those 24 were females. There was no statistically significant association between the RMC and age (p > 0.05; Fisher's Exact Test), sex (p = 0.787; Pearson's Chi-Square Test), amount of mandibular canals and mental foramina, on both sides (p > 0.05; Pearson's Chi-Square Test). There was a significant association between RMC and side, the higher frequency of the canal being on the right side (p < 0.05; Fisher's Exact Test). Conclusions. Despite the low occurrence of the RMC, its identification and the verification of its dimensions and path are relevant, mainly in cases when anesthetic and surgical procedures can present failures or difficulties.
Resumo:
The objective of this work was to study the morphology and biometry of the infraorbital foramen (FIO), variations in its shape, size and number as well as to obtain measurements of its location. 60 dry skulls were analyzed. The test of Qui-quadrant and the T Test were used in measurements with a 5% significance. On the right side, the FIO was measured at a distance of 6.49(+/- 1.68) mm from the lower, 39.65(+/- 3) mm from the upper, 17.7(+/- 2.97) mm from the medial and 20.46(+/- 2.9) mm from the lateral margin of the orbit; its pear-shaped opening distance was 13.67(+/- 2.17) mm. On the left side, the distance of the FIO to the lower margin of the orbit was 6.52(+/- 1.82) mm; to the upper margin was 39.9(+/- 2.62) mm and to the lateral and medial margin were 17.93(+/- 2.58) mm and 21.12(+/- 3) mm, respectively; its distance to the pear-shaped opening was 14.26(+/- 1.83) mm. It was found predominately in an oval shape, in 39 (65%) of the skulls, on both sides. Accessory foramens were present in 11 samples on the right and in 15 samples on the left side. The FIO was most frequently found on the side of, or laterally to the sagittal plane that passes through the middle of the supraorbital foramen/incisures, in 38 skulls (63.3%) on the right side and in 45 skulls (75%) on the left and middle to the zigomatic-maxillary suture, in 41 skulls (68.3%) on right and in 42 skulls (70%) on the left side, besides being most frequently found in a region between the first and second premolars, in 22 skulls (36.7%) on the right side and in 17 skulls (28.3%) on the left.
Resumo:
The aim of this study was to assess, in vivo, the accuracy of the NovApex (R) electronic foramen locator in determining working length (WL) in vital and necrotic posterior teeth. The NovApex (R) was used in 144 canals: 35 teeth with vital pulps (68 canals) and 42 teeth with necrotic pulps (76 canals). WL was measured with the NovApex (R) locator and confirmed using the radiographic method. Differences between electronic and radiographic measurements ranging between 0.0 and 0.4 millimeters were classified as acceptable; differences equal to or greater than 0.5 millimeter were considered unacceptable. Pearson's chi-square test was used to assess the influence of pulp condition on the accuracy of NovApex (R) (alpha = 0.05). Regardless of pulp condition, differences between electronic and radiographic WL measurements were acceptable in 73.61% of the canals. No statistically significant differences in accuracy were observed when comparing vital and necrotic canals (p > 0.05). There were 38 unacceptable measurements. In none of these cases was the file tip located beyond the radiographic apex; in 32, it was located short of the NovApex (R) measurement. Pulp condition had no significant effect on the accuracy of NovApex (R).