950 resultados para interval prediction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES This study sought to validate the Logistic Clinical SYNTAX (Synergy Between Percutaneous Coronary Intervention With Taxus and Cardiac Surgery) score in patients with non-ST-segment elevation acute coronary syndromes (ACS), in order to further legitimize its clinical application. BACKGROUND The Logistic Clinical SYNTAX score allows for an individualized prediction of 1-year mortality in patients undergoing contemporary percutaneous coronary intervention. It is composed of a "Core" Model (anatomical SYNTAX score, age, creatinine clearance, and left ventricular ejection fraction), and "Extended" Model (composed of an additional 6 clinical variables), and has previously been cross validated in 7 contemporary stent trials (>6,000 patients). METHODS One-year all-cause death was analyzed in 2,627 patients undergoing percutaneous coronary intervention from the ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy) trial. Mortality predictions from the Core and Extended Models were studied with respect to discrimination, that is, separation of those with and without 1-year all-cause death (assessed by the concordance [C] statistic), and calibration, that is, agreement between observed and predicted outcomes (assessed with validation plots). Decision curve analyses, which weight the harms (false positives) against benefits (true positives) of using a risk score to make mortality predictions, were undertaken to assess clinical usefulness. RESULTS In the ACUITY trial, the median SYNTAX score was 9.0 (interquartile range 5.0 to 16.0); approximately 40% of patients had 3-vessel disease, 29% diabetes, and 85% underwent drug-eluting stent implantation. Validation plots confirmed agreement between observed and predicted mortality. The Core and Extended Models demonstrated substantial improvements in the discriminative ability for 1-year all-cause death compared with the anatomical SYNTAX score in isolation (C-statistics: SYNTAX score: 0.64, 95% confidence interval [CI]: 0.56 to 0.71; Core Model: 0.74, 95% CI: 0.66 to 0.79; Extended Model: 0.77, 95% CI: 0.70 to 0.83). Decision curve analyses confirmed the increasing ability to correctly identify patients who would die at 1 year with the Extended Model versus the Core Model versus the anatomical SYNTAX score, over a wide range of thresholds for mortality risk predictions. CONCLUSIONS Compared to the anatomical SYNTAX score alone, the Core and Extended Models of the Logistic Clinical SYNTAX score more accurately predicted individual 1-year mortality in patients presenting with non-ST-segment elevation acute coronary syndromes undergoing percutaneous coronary intervention. These findings support the clinical application of the Logistic Clinical SYNTAX score.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Assessment of pre-test probability of pulmonary embolism (PE) and prognostic stratification are two widely recommended steps in the management of patients with suspected PE. Some items of the Geneva prediction rule may have a prognostic value. We analyzed whether the initial probability assessed by the Geneva rule was associated with the outcome of patients with PE. METHODS In a post-hoc analysis of a multicenter trial including 1,693 patients with suspected PE, the all-cause death or readmission rates during the 3-month follow-up of patients with confirmed PE were analyzed. PE probability group was prospectively assessed by the revised Geneva score (RGS). Similar analyses were made with the a posteriori-calculated simplified Geneva score (SGS). RESULTS PE was confirmed in 357 patients and 21 (5.9%) died during the 3-month follow-up. The mortality rate differed significantly with the initial RGS group, as with the SGS group. For the RGS, the mortality increased from 0% (95% Confidence Interval: [0-5.4%]) in the low-probability group to 14.3% (95% CI: [6.3-28.2%]) in the high-probability group, and for the SGS, from 0% (95% CI: [0-5.4%] to 17.9% (95% CI: [7.4-36%]). Readmission occurred in 58 out of the 352 patients with complete information on readmission (16.5%). No significant change of readmission rate was found among the RGS or SGS groups. CONCLUSIONS Returning to the initial PE probability evaluation may help clinicians predict 3-month mortality in patients with confirmed PE. (ClinicalTrials.gov: NCT00117169).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Heart failure with preserved ejection fraction (HFpEF) represents a growing health burden associated with substantial mortality and morbidity. Consequently, risk prediction is of highest importance. Endothelial dysfunction has been recently shown to play an important role in the complex pathophysiology of HFpEF. We therefore aimed to assess von Willebrand factor (vWF), a marker of endothelial damage, as potential biomarker for risk assessment in patients with HFpEF. METHODS AND RESULTS Concentrations of vWF were assessed in 457 patients with HFpEF enrolled as part of the LUdwigshafen Risk and Cardiovascular Health (LURIC) study. All-cause mortality was observed in 40% of patients during a median follow-up time of 9.7 years. vWF significantly predicted mortality with a hazard ratio (HR) per increase of 1 SD of 1.45 (95% confidence interval, 1.26-1.68; P<0.001) and remained a significant predictor after adjustment for age, sex, body mass index, N-terminal pro-B-type natriuretic peptide (NT-proBNP), renal function, and frequent HFpEF-related comorbidities (adjusted HR per 1 SD, 1.22; 95% confidence interval, 1.05-1.42; P=0.001). Most notably, vWF showed additional prognostic value beyond that achievable with NT-proBNP indicated by improvements in C-Statistic (vWF×NT-proBNP: 0.65 versus NT-proBNP: 0.63; P for comparison, 0.004) and category-free net reclassification index (37.6%; P<0.001). CONCLUSIONS vWF is an independent predictor of long-term outcome in patients with HFpEF, which is in line with endothelial dysfunction as potential mediator in the pathophysiology of HFpEF. In particular, combined assessment of vWF and NT-proBNP improved risk prediction in this vulnerable group of patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE Copeptin has been associated with recurrent cerebrovascular events after transient ischemic attack (TIA). In an independent cohort, we evaluated copeptin for the prediction of recurrent cerebrovascular events within 3 months after TIA and assessed the incremental value of copeptin compared with the ABCD2 (age, blood, clinical features of TIA, duration of symptoms, presence of diabetes mellitus) and ABCD3-I (ABCD2, dual TIA [the presence of ≥2 TIA symptoms within 7 days], imaging [the presence of abnormal findings on neuroimaging]) scores. METHODS This prospective, multicenter cohort study was conducted at 3 tertiary Stroke Centers in Switzerland and Germany. RESULTS From March 2009 through April 2011, we included 302 patients with TIA admitted within 24 hours from symptom onset. Of 28 patients with a recurrent cerebrovascular event within 3 months (stroke or TIA), 11 patients had a stroke. Although the association of copeptin with recurrent cerebrovascular events was not significant, the association with stroke alone as end point was significant. After adjusting for the ABCD2 score, a 10-fold increase in copeptin levels was associated with an odds ratio for stroke of 3.39 (95% confidence interval, 1.28-8.96; P=0.01). After addition of copeptin to the ABCD2 score, the area under the curve of the ABCD2 score improved from 0.60 (95% confidence interval, 0.46-0.74) to 0.74 (95% confidence interval, 0.60-0.88, P=0.02). In patients with MRI (n=223), the area under the curve of the ABCD3-I score increased in similar magnitude, although not significantly. Based on copeptin, 31.2% of patients were correctly reclassified across the risk categories of the ABCD2 score (net reclassification improvement; P=0.17). CONCLUSIONS Copeptin improved the prognostic value of the ABCD2 score for the prediction of stroke but not TIA, and it may help clinicians in refining risk stratification for patients with TIA. CLINICAL TRIAL REGISTRATION URL http://www.clinicaltrials.gov. Unique identifier: NCT00878813.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The value of electrocardiographic findings predicting adverse outcome in patients with arrhythmogenic right ventricular dysplasia (ARVD) is not well known. We hypothesized that ventricular depolarization and repolarization abnormalities on the 12-lead surface electrocardiogram (ECG) predict adverse outcome in patients with ARVD. ECGs of 111 patients screened for the 2010 ARVD Task Force Criteria from 3 Swiss tertiary care centers were digitized and analyzed with a digital caliper by 2 independent observers blinded to the outcome. ECGs were compared in 2 patient groups: (1) patients with major adverse cardiovascular events (MACE: a composite of cardiac death, heart transplantation, survived sudden cardiac death, ventricular fibrillation, sustained ventricular tachycardia, or arrhythmic syncope) and (2) all remaining patients. A total of 51 patients (46%) experienced MACE during a follow-up period with median of 4.6 years (interquartile range 1.8 to 10.0). Kaplan-Meier analysis revealed reduced times to MACE for patients with repolarization abnormalities according to Task Force Criteria (p = 0.009), a precordial QRS amplitude ratio (∑QRS mV V1 to V3/∑QRS mV V1 to V6) of ≤ 0.48 (p = 0.019), and QRS fragmentation (p = 0.045). In multivariable Cox regression, a precordial QRS amplitude ratio of ≤ 0.48 (hazard ratio [HR] 2.92, 95% confidence interval [CI] 1.39 to 6.15, p = 0.005), inferior leads T-wave inversions (HR 2.44, 95% CI 1.15 to 5.18, p = 0.020), and QRS fragmentation (HR 2.65, 95% CI 1.1 to 6.34, p = 0.029) remained as independent predictors of MACE. In conclusion, in this multicenter, observational, long-term study, electrocardiographic findings were useful for risk stratification in patients with ARVD, with repolarization criteria, inferior leads TWI, a precordial QRS amplitude ratio of ≤ 0.48, and QRS fragmentation constituting valuable variables to predict adverse outcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PRINCIPLES Prediction of arrhythmic events (AEs) has gained importance with the availability of implantable cardioverter-defibrillators (ICDs), but is still imprecise. This study evaluated the innovative Wedensky modulation index (WMI) as predictor of AEs. METHODS In this prospective cohort, 179 patients with coronary artery disease (CAD) referred for AE risk assessment underwent baseline evaluation including measurement of R-/T-wave WMI (WMI(RT)) and left ventricular ejection fraction (LVEF). Two endpoints were assessed 3 years after the baseline evaluation: sudden cardiac death or appropriate ICD event (EP1) and any cardiac death or appropriate ICD event (EP2). Associations between baseline predictors (WMI(RT) and LVEF) and endpoints were evaluated in regression models. RESULTS Only three patients were lost to follow-up. EP1 and EP2 occurred in 24 and 27 patients, respectively. WMI(RT) (odds ratio [OR] per 1 point increase for EP1 20.1, 95% confidence interval [CI] 1.8-221.4, p = 0.014, and for EP2 73.3, 95% CI 6.6-817.7, p <0.001) and LVEF (OR per 1% increase for EP1 0.94, 95% CI 0.90-0.99, p = 0.013, and for EP2 0.93, 95% CI 0.89-0.97, p = 0.002) were significantly associated with both endpoints. In bivariable regression controlled for LVEF, WMI(RT) was independently associated with EP1 (p = 0.047) and EP2 (p = 0.007). The combination of WMI(RT) ≥0.60 and LVEF ≤30% resulted in a positive predictive value of 36% for EP1 and 50% for EP2. CONCLUSIONS WMI(RT) is a significant predictor of AEs independent of LVEF and has potential to improve AE risk prediction in CAD patients. However, WMI(RT) should be evaluated in larger and independent samples before recommendations for clinical routine can be made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The updated Vienna Prediction Model for estimating recurrence risk after an unprovoked venous thromboembolism (VTE) has been developed to identify individuals at low risk for VTE recurrence in whom anticoagulation (AC) therapy may be stopped after 3 months. We externally validated the accuracy of the model to predict recurrent VTE in a prospective multicenter cohort of 156 patients aged ≥65 years with acute symptomatic unprovoked VTE who had received 3 to 12 months of AC. Patients with a predicted 12-month risk within the lowest quartile based on the updated Vienna Prediction Model were classified as low risk. The risk of recurrent VTE did not differ between low- vs higher-risk patients at 12 months (13% vs 10%; P = .77) and 24 months (15% vs 17%; P = 1.0). The area under the receiver operating characteristic curve for predicting VTE recurrence was 0.39 (95% confidence interval [CI], 0.25-0.52) at 12 months and 0.43 (95% CI, 0.31-0.54) at 24 months. In conclusion, in elderly patients with unprovoked VTE who have stopped AC, the updated Vienna Prediction Model does not discriminate between patients who develop recurrent VTE and those who do not. This study was registered at www.clinicaltrials.gov as #NCT00973596.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62E16, 65C05, 65C20.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification of subjects at high risk for Alzheimer’s disease is important for prognosis and early intervention. We investigated the polygenic architecture of Alzheimer’s disease and the accuracy of Alzheimer’s disease prediction models, including and excluding the polygenic component in the model. This study used genotype data from the powerful dataset comprising 17 008 cases and 37 154 controls obtained from the International Genomics of Alzheimer’s Project (IGAP). Polygenic score analysis tested whether the alleles identified to associate with disease in one sample set were significantly enriched in the cases relative to the controls in an independent sample. The disease prediction accuracy was investigated in a subset of the IGAP data, a sample of 3049 cases and 1554 controls (for whom APOE genotype data were available) by means of sensitivity, specificity, area under the receiver operating characteristic curve (AUC) and positive and negative predictive values. We observed significant evidence for a polygenic component enriched in Alzheimer’s disease (P = 4.9 × 10−26). This enrichment remained significant after APOE and other genome-wide associated regions were excluded (P = 3.4 × 10−19). The best prediction accuracy AUC = 78.2% (95% confidence interval 77–80%) was achieved by a logistic regression model with APOE, the polygenic score, sex and age as predictors. In conclusion, Alzheimer’s disease has a significant polygenic component, which has predictive utility for Alzheimer’s disease risk and could be a valuable research tool complementing experimental designs, including preventative clinical trials, stem cell selection and high/low risk clinical studies. In modelling a range of sample disease prevalences, we found that polygenic scores almost doubles case prediction from chance with increased prediction at polygenic extremes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-07

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-throughput techniques are necessary to efficiently screen potential lignocellulosic feedstocks for the production of renewable fuels, chemicals, and bio-based materials, thereby reducing experimental time and expense while supplanting tedious, destructive methods. The ratio of lignin syringyl (S) to guaiacyl (G) monomers has been routinely quantified as a way to probe biomass recalcitrance. Mid-infrared and Raman spectroscopy have been demonstrated to produce robust partial least squares models for the prediction of lignin S/G ratios in a diverse group of Acacia and eucalypt trees. The most accurate Raman model has now been used to predict the S/G ratio from 269 unknown Acacia and eucalypt feedstocks. This study demonstrates the application of a partial least squares model composed of Raman spectral data and lignin S/G ratios measured using pyrolysis/molecular beam mass spectrometry (pyMBMS) for the prediction of S/G ratios in an unknown data set. The predicted S/G ratios calculated by the model were averaged according to plant species, and the means were not found to differ from the pyMBMS ratios when evaluating the mean values of each method within the 95 % confidence interval. Pairwise comparisons within each data set were employed to assess statistical differences between each biomass species. While some pairwise appraisals failed to differentiate between species, Acacias, in both data sets, clearly display significant differences in their S/G composition which distinguish them from eucalypts. This research shows the power of using Raman spectroscopy to supplant tedious, destructive methods for the evaluation of the lignin S/G ratio of diverse plant biomass materials. © 2015, The Author(s).