982 resultados para integrable field theories


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we employ renormalization group methods to study the general behavior of field theories possessing anisotropic scaling in the spacetime variables. The Lorentz symmetry breaking that accompanies these models are either soft, if no higher spatial derivative is present, or it may have a more complex structure if higher spatial derivatives are also included. Both situations are discussed in models with only scalar fields and also in models with fermions as a Yukawa-like model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we develop a normal product algorithm suitable to the study of anisotropic field theories in flat space, apply it to construct the symmetries generators and describe how their possible anomalies may be found. In particular, we discuss the dilatation anomaly in a scalar model with critical exponent z = 2 in six spatial dimensions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a two-parameter family of Z(2) gauge theories on a lattice discretization T(M) of a three-manifold M and its relation to topological field theories. Familiar models such as the spin-gauge model are curves on a parameter space Gamma. We show that there is a region Gamma(0) subset of Gamma where the partition function and the expectation value h < W-R(gamma)> i of the Wilson loop can be exactly computed. Depending on the point of Gamma(0), the model behaves as topological or quasi-topological. The partition function is, up to a scaling factor, a topological number of M. The Wilson loop on the other hand, does not depend on the topology of gamma. However, for a subset of Gamma(0), < W-R(gamma)> depends on the size of gamma and follows a discrete version of an area law. At the zero temperature limit, the spin-gauge model approaches the topological and the quasi-topological regions depending on the sign of the coupling constant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

If a scalar eld theory in (1+1) dimensions possesses soliton solutions obeying rst order BPS equations, then, in general, it is possible to nd an in nite number of related eld theories with BPS solitons which obey closely related BPS equations. We point out that this fact may be understood as a simple consequence of an appropriately generalised notion of self-duality. We show that this self-duality framework enables us to generalize to higher dimensions the construction of new solitons from already known solutions. By performing simple eld transformations our procedure allows us to relate solitons with di erent topological properties. We present several interesting examples of such solitons in two and three dimensions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi il Gruppo di Rinormalizzazione non-perturbativo (FRG) viene applicato ad una particolare classe di modelli rilevanti in Gravit`a quantistica, conosciuti come Tensorial Group Field Theories (TGFT). Le TGFT sono teorie di campo quantistiche definite sulla variet`a di un gruppo G. In ogni dimensione esse possono essere espanse in grafici di Feynman duali a com- plessi simpliciali casuali e sono caratterizzate da interazioni che implementano una non-localit`a combinatoriale. Le TGFT aspirano a generare uno spaziotempo in un contesto background independent e precisamente ad ottenere una descrizione con- tinua della sua geometria attraverso meccanismi fisici come le transizioni di fase. Tra i metodi che meglio affrontano il problema di estrarre le transizioni di fase e un associato limite del continuo, uno dei pi` u efficaci `e il Gruppo di Rinormalizzazione non-perturbativo. In questo elaborato ci concentriamo su TGFT definite sulla variet`a di un gruppo non-compatto (G = R) e studiamo il loro flusso di Rinormalizzazione. Identifichiamo con successo punti fissi del flusso di tipo IR, e una superficie critica che suggerisce la presenza di transizioni di fase in regime Infrarosso. Ci`o spinge ad uno stu- dio per approfondire la comprensione di queste transizioni di fase e della fisica continua che vi `e associata. Affrontiamo inoltre il problema delle divergenze Infrarosse, tramite un processo di regolarizzazione che definisce il limite termodinamico appropriato per le TGFT. Infine, applichiamo i metodi precedentementi sviluppati ad un modello dotato di proiezione sull’insieme dei campi gauge invarianti. L’analisi, simile a quella applicata al modello precedente, conduce nuovamente all’identificazione di punti fissi (sia IR che UV) e di una superficie critica. La presenza di transizioni di fasi `e, dunque, evidente ancora una volta ed `e possibile confrontare il risultato col modello senza proiezione sulla dinamica gauge invariante.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel approach to the inference of spectral functions from Euclidean time correlator data that makes close contact with modern Bayesian concepts. Our method differs significantly from the maximum entropy method (MEM). A new set of axioms is postulated for the prior probability, leading to an improved expression, which is devoid of the asymptotically flat directions present in the Shanon-Jaynes entropy. Hyperparameters are integrated out explicitly, liberating us from the Gaussian approximations underlying the evidence approach of the maximum entropy method. We present a realistic test of our method in the context of the nonperturbative extraction of the heavy quark potential. Based on hard-thermal-loop correlator mock data, we establish firm requirements in the number of data points and their accuracy for a successful extraction of the potential from lattice QCD. Finally we reinvestigate quenched lattice QCD correlators from a previous study and provide an improved potential estimation at T2.33TC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we study at perturbative level correlation functions of Wilson loops (and local operators) and their relations to localization, integrability and other quantities of interest as the cusp anomalous dimension and the Bremsstrahlung function. First of all we consider a general class of 1/8 BPS Wilson loops and chiral primaries in N=4 Super Yang-Mills theory. We perform explicit two-loop computations, for some particular but still rather general configuration, that confirm the elegant results expected from localization procedure. We find notably full consistency with the multi-matrix model averages, obtained from 2D Yang-Mills theory on the sphere, when interacting diagrams do not cancel and contribute non-trivially to the final answer. We also discuss the near BPS expansion of the generalized cusp anomalous dimension with L units of R-charge. Integrability provides an exact solution, obtained by solving a general TBA equation in the appropriate limit: we propose here an alternative method based on supersymmetric localization. The basic idea is to relate the computation to the vacuum expectation value of certain 1/8 BPS Wilson loops with local operator insertions along the contour. Also these observables localize on a two-dimensional gauge theory on S^2, opening the possibility of exact calculations. As a test of our proposal, we reproduce the leading Luscher correction at weak coupling to the generalized cusp anomalous dimension. This result is also checked against a genuine Feynman diagram approach in N=4 super Yang-Mills theory. Finally we study the cusp anomalous dimension in N=6 ABJ(M) theory, identifying a scaling limit in which the ladder diagrams dominate. The resummation is encoded into a Bethe-Salpeter equation that is mapped to a Schroedinger problem, exactly solvable due to the surprising supersymmetry of the effective Hamiltonian. In the ABJ case the solution implies the diagonalization of the U(N) and U(M) building blocks, suggesting the existence of two independent cusp anomalous dimensions and an unexpected exponentation structure for the related Wilson loops.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main aim of this thesis is to investigate the application of methods of differential geometry to the constraint analysis of relativistic high spin field theories. As a starting point the coordinate dependent descriptions of the Lagrangian and Dirac-Bergmann constraint algorithms are reviewed for general second order systems. These two algorithms are then respectively employed to analyse the constraint structure of the massive spin-1 Proca field from the Lagrangian and Hamiltonian viewpoints. As an example of a coupled field theoretic system the constraint analysis of the massive Rarita-Schwinger spin-3/2 field coupled to an external electromagnetic field is then reviewed in terms of the coordinate dependent Dirac-Bergmann algorithm for first order systems. The standard Velo-Zwanziger and Johnson-Sudarshan inconsistencies that this coupled system seemingly suffers from are then discussed in light of this full constraint analysis and it is found that both these pathologies degenerate to a field-induced loss of degrees of freedom. A description of the geometrical version of the Dirac-Bergmann algorithm developed by Gotay, Nester and Hinds begins the geometrical examination of high spin field theories. This geometric constraint algorithm is then applied to the free Proca field and to two Proca field couplings; the first of which is the minimal coupling to an external electromagnetic field whilst the second is the coupling to an external symmetric tensor field. The onset of acausality in this latter coupled case is then considered in relation to the geometric constraint algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this thesis is twofold: to examine the validity of the rotating-field and cross-field theories of the single-phase induction motor when applied to a cage rotor machine; and to examine the extent to which skin effect is likely to modify the characteristics of a cage rotor machine. A mathematical analysis is presented for a single-phase induction motor in which the rotor parameters are modified by skin effect. Although this is based on the usual type of ideal machine, a new form of model rotor allows approximations for skin effect phenomena to be included as an integral part of the analysis. Performance equations appropriate to the rotating-field and cross-field theories are deduced, and the corresponding explanations for the steady-state mode of operation are critically examined. The evaluation of the winding currents and developed torque is simplified by the introduction of new dimensionless factors which are functions of the resistance/reactance ratios of the rotor and the speed. Tables of the factors are included for selected numerical values of the parameter ratios, and these are used to deduce typical operating characteristics for both cage and wound rotor machines. It is shown that a qualitative explanation of the mode of operation of a cage rotor machine is obtained from either theory; but the operating characteristics must be deduced from the performance equations of the rotating-field theory, because of the restrictions on the values of the rotor parameters imposed by skin effect.