981 resultados para insect-plant interactions


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Insect galls of restinga areas of Ilha da Marambaia, Rio de Janeiro, Brazil. This study carried out an insect gall inventory in restinga areas of Ilha da Marambaia, in the municipality of Mangaratiba, Rio de Janeiro, Brazil. Sampling was carried out monthly from April 2010 to March 2011 along the full extension of seven beaches. A total number of 147 gall morphotypes associated with 70 plant species were found, distributed in 33 plant families, and at least 54 genera. Myrtaceae was the botanical family with the highest richness of gall morphotypes and host species, followed by Bignoniaceae, Fabaceae, Asteraceae, Euphorbiaceae, Sapindaceae, and Malpighiaceae. Most of the gall morphotypes occurred in leaves (78 morphotypes), 38 in stems, 14 in flowers, eight in buds and fruits, and one in adventitious roots. The galling insects belong to the five orders: Diptera, Coleoptera, Hemiptera, Lepidoptera, and Thysanoptera. Cecidomyiidae (Diptera) was the most common galling taxon (78 morphotypes), represented by 87 species, being 78 gallers, seven inquilines and two predators. In addition to the gallers, parasitoids, inquilines, and predators were also found.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The size-advantage model (SAM) explains the temporal variation of energetic investment on reproductive structures (i.e. male and female gametes and reproductive organs) in long-lived hermaphroditic plants and animals. It proposes that an increase in the resources available to an organism induces a higher relative investment on the most energetically costly sexual structures. In plants, pollination interactions are known to play an important role in the evolution of floral features. Because the SAM directly concerns flower characters, pollinators are expected to have a strong influence on the application of the model. This hypothesis, however, has never been tested. Here, we investigate whether the identity and diversity of pollinators can be used as a proxy to predict the application of the SAM in exclusive zoophilous plants. We present a new approach to unravel the dynamics of the model and test it on several widespread Arum (Araceae) species. By identifying the species composition, abundance and spatial variation of arthropods trapped in inflorescences, we show that some species (i.e. A. cylindraceum and A. italicum) display a generalist reproductive strategy, relying on the exploitation of a low number of dipterans, in contrast to the pattern seen in the specialist A. maculatum (pollinated specifically by two fly species only). Based on the model presented here, the application of the SAM is predicted for the first two and not expected in the latter species, those predictions being further confirmed by allometric measures. We here demonstrate that while an increase in the female zone occurs in larger inflorescences of generalist species, this does not happen in species demonstrating specific pollinators. This is the first time that this theory is both proposed and empirically tested in zoophilous plants. Its overall biological importance is discussed through its application in other non-Arum systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The role of competition for light among plants has long been recognized at local scales, but its potential importance for plant species' distribution at larger spatial scales has largely been ignored. Tree cover acts as a modulator of local abiotic conditions, notably by reducing light availability below the canopy and thus the performance of species that are not adapted to low-light conditions. However, this local effect may propagate to coarser spatial grains. Using 6,935 vegetation plots located across the European Alps, we fit Generalized Linear Models (GLM) for the distribution of 960 herbs and shrubs species to assess the effect of tree cover at both plot and landscape grain sizes (~ 10-m and 1-km, respectively). We ran four models with different combinations of variables (climate, soil and tree cover) for each species at both spatial grains. We used partial regressions to evaluate the independent effects of plot- and landscape-scale tree cover on plant communities. Finally, the effects on species' elevational range limits were assessed by simulating a removal experiment comparing the species' distribution under high and low tree cover. Accounting for tree cover improved model performance, with shade-tolerant species increasing their probability of presence at high tree cover whereas shade-intolerant species showed the opposite pattern. The tree cover effect occurred consistently at both plot and landscape spatial grains, albeit strongest at the former. Importantly, tree cover at the two grain sizes had partially independent effects on plot-scale plant communities, suggesting that the effects may be transmitted to coarser grains through meta-community dynamics. At high tree cover, shade-intolerant species exhibited elevational range contractions, especially at their upper limit, whereas shade-tolerant species showed elevational range expansions at both limits. Our findings suggest that the range shifts for herb and shrub species may be modulated by tree cover dynamics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biotic interactions are known to affect the composition of species assemblages via several mechanisms, such as competition and facilitation. However, most spatial models of species richness do not explicitly consider inter-specific interactions. Here, we test whether incorporating biotic interactions into high-resolution models alters predictions of species richness as hypothesised. We included key biotic variables (cover of three dominant arctic-alpine plant species) into two methodologically divergent species richness modelling frameworks - stacked species distribution models (SSDM) and macroecological models (MEM) - for three ecologically and evolutionary distinct taxonomic groups (vascular plants, bryophytes and lichens). Predictions from models including biotic interactions were compared to the predictions of models based on climatic and abiotic data only. Including plant-plant interactions consistently and significantly lowered bias in species richness predictions and increased predictive power for independent evaluation data when compared to the conventional climatic and abiotic data based models. Improvements in predictions were constant irrespective of the modelling framework or taxonomic group used. The global biodiversity crisis necessitates accurate predictions of how changes in biotic and abiotic conditions will potentially affect species richness patterns. Here, we demonstrate that models of the spatial distribution of species richness can be improved by incorporating biotic interactions, and thus that these key predictor factors must be accounted for in biodiversity forecasts

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Intercropping systems are seen as advantageous as they can provide higher crop yield and diversity along with fewer issues related to pests and weeds than monocultures. However, plant interactions in intercropped crop species and between crops and weeds in these systems are still not well understood. The main objective of this study was to investigate interactions between onion (Allium cepa) and yellow wax bean (Phaseolus vulgaris) in monocultures and intercropping with and without the presence of a weed species, either Chenopodium album or Amaranthus hybridus. Another objective of this study was to compare morphological traits of C. album from two different populations (conventional vs. organic farms). Using a factorial randomized block design, both crop species were planted either in monoculture or intercropped with or without the presence of one of the two weeds. The results showed that intercropping onion with yellow wax bean increased the growth of onion but decreased the growth of yellow wax bean when compared to monocultures. The relative yield total (RYT) value was 1.3. Individual aboveground dry weight of both weed species under intercropping was reduced about 5 times when compared to the control. The poor growth of weeds in intercropping might suggest that crop diversification can help resist weed infestations. A common garden experiment indicated that C. album plants from the conventional farm had larger leaf area and were taller than those from the organic farm. This might be associated with specific evolutionary adaptation of weeds to different farming practices. These findings contribute to the fundamental knowledge of crop-crop interactions, crop-weed competition and adaptation of weeds to various conditions. They provide insights for the management of diversified cropping systems and integrated weed management as practices in sustainable agriculture.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hundreds of tropical plant species house ant colonies in specialized chambers called domatia. When, in 1873, Richard Spruce likened plant-ants to fleas and asserted that domatia are ant-created galls, he incited a debate that lasted almost a century. Although we now know that domatia are not galls and that most ant-plant interactions are mutualisms and not parasitisms, we revisit Spruce`s suggestion that ants can gall in light of our observations of the plant-ant Myrmelachista schumanni, which creates clearings in the Amazonian rain forest called ""supay-chakras,"" or ""devil`s gardens."" We observed swollen scars on the trunks of nonmyrmecophytic canopy trees surrounding supay-chakras, and within these swellings, we found networks of cavities inhabited by M. schumanni. Here, we summarize the evidence supporting the hypothesis that M. schumanni ants make these galls, and we hypothesize that the adaptive benefit of galling is to increase the amount of nesting space available to M. schumanni colonies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The seasonal density fluctuation, phenology and sex ratio of Peucetia flava (Oxyopidae) on Rhyncanthera dichotoma (Melastomataceae) were investigated during a year in a swamp in southeastern Brazil. Peucetia flava displayed an unusual non-seasonal life cycle and the population size varied little over the year. The density of Peucetia spiders increased with the increase in abundance of leaves and number of arthropods adhered to glandular trichomes on R. dichotoma leaves. Our findings suggest that seasonal density fluctuation of Peucetia may be influenced by foraging site availability (i.e. leaves) and prey supply (i.e. arthropods adhering to glandular trichomes). The unusual seasonal stability of P. flava may be related to the type of habitat in which this spider occurs (swamp), because of the constant input of allochthonous resources from the water source, i.e. aquatic insects that migrate to the terrestrial environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two allopatric species of Coryphasia (Araneae: Salticidae), both described for the first time in this study, have been found associated with Bromeliaceae in distinct phytophysiognomies (e.g., inselbergs, highland forests and restingas) from southeastern Brazil. In this study, we investigated whether these salticids were associated specifically with bromeliads, and whether they used bromeliads of different species and sizes in distinct geographic regions. The Coryphasia species were rarely found outside bromeliads, occupied larger bromeliad species among those available, and were generally more frequent on bromeliads in open areas, such as inselbergs on mountain tops. The two Coophasia species were observed submerging in phytotelmata, possibly as an anti-predatory behavior. The patterns of spatial and microspatial distribution and the submergence behavior of these species were similar to those of other bromeliad-dwelling salticids, which suggests a convergence among spiders that live on bromeliads.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A total of 20 insect species were observed on the extrafloral nectaries (EFNs) of Croton sarcopetalus. The most frequent ant species were Zacryptocerus sp., Crematogaster brevispinosa, C. scelerata, and Linepithema humile. Ants continuously patrolled the plants taking extrafloral nectar. Experimental data showed that there were no significant differences in either the degree of herbivory or in the reproductive output between control stems (with ants) and treated ones (without ants). We found no significant evidence of protection by ants mediated by EFNs in C. sarcopetalus. It is possible that the plant has other mechanisms than ant protection to prevent herbivore damage (e.g., hairs, latex, chemical defense). As this species occupies the southernmost distribution for the genus, the presence of EFNs in this species may be the remnant of a mutualistic interaction with the ants in tropical regions, where the abundance and diversity of ants and herbivores are comparatively higher. To draw accurate patterns in the genus Croton, further investigations in other species from tropical regions of South America are needed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ascia monuste orseis (Godart) (Lepidoptera: Pieridae) is a production limiting pest in collard greens, Brassica oleracea (L.) var. acephala, cultivation. Because of the overuse and harmful effects of synthetic insecticides on nontarget species, the use of insect-resistant cultivars can be a valuable strategy in pest control. In this study, newly hatched A. monuste orseis larvae were confined to the leaves of 29 collard greens cultivars under a controlled environment to investigate plant resistance. We evaluated the incubation period, duration of instars, total duration of the immature and pupal phases, the egg to adult life cycle duration, mortality per instar, total weight of fifth instar larvae and pupae (age = 24 h) and larval and pupal survival and eclosion. Antibiosis and/or antixenosis were observed in selected cultivars. The results show that Gigante I-915 (E) exhibited high larval mortality and that the Pires 1 de Campinas cultivar (P) prevented all pupae from proceeding to the adult stage. The Introdu double dagger es do municipio de Arthur Nogueira Z (Y), Cabocla (AA), Japonesa (R) and Manteiga de Mococa (M) cultivars prolonged the larval stage. Japonesa (R) and Introdu double dagger es do municipio de Arthur Nogueira Z (Y) increased the egg to adult developmental period, and the Japonesa (R) cultivar also prolonged the pupal stage. The Verde-escura (O), Crespa de Capo Bonito (I), Couve de folhas Manteiga 900 Legitima P, Alto (AB), Gigante I-915 (E) and Manteiga Ribeiro Pires I-2446 (H) cultivars reduced the larval weight of A. monuste orseis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite recognition of key biotic processes in shaping the structure of biological communities, few empirical studies have explored the influences of abiotic factors on the structural properties of mutualistic networks. We tested whether temperature and precipitation contribute to temporal variation in the nestedness of mutualistic ant-plant networks. While maintaining their nested structure, nestedness increased with mean monthly precipitation and, particularly, with monthly temperature. Moreover, some species changed their role in network structure, shifting from peripheral to core species within the nested network. We could summarize that abiotic factors affect plant species in the vegetation (e.g., phenology), meaning presence/absence of food sources, consequently an increase/decrease of associations with ants, and finally, these variations to fluctuations in nestedness. While biotic factors are certainly important, greater attention needs to be given to abiotic factors as underlying determinants of the structures of ecological networks.