999 resultados para information optics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cover title.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that deterministic quantum computing with a single bit can determine whether the classical limit of a quantum system is chaotic or integrable using O(N) physical resources, where N is the dimension of the Hilbert space of the system under study. This is a square-root improvement over all known classical procedures. Our study relies strictly on the random matrix conjecture. We also present numerical results for the nonlinear kicked top.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We outline a toolbox comprised of passive optical elements, single photon detection and superpositions of coherent states (Schrodinger cat states). Such a toolbox is a powerful collection of primitives for quantum information processing tasks. We illustrate its use by outlining a proposal for universal quantum computation. We utilize this toolbox for quantum metrology applications, for instance weak force measurements and precise phase estimation. We show in both these cases that a sensitivity at the Heisenberg limit is achievable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We provide optimal measurement schemes for estimating relative parameters of the quantum state of a pair of spin systems. We prove that the optimal measurements are joint measurements on the pair of systems, meaning that they cannot be achieved by local operations and classical communication. We also demonstrate that in the limit where one of the spins becomes macroscopic, our results reproduce those that are obtained by treating that spin as a classical reference direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that interesting multigate circuits can be constructed using a postselected controlled-sign gate that works with a probability (1/3)(n), where n-1 is the number of controlled-sign gates in the circuit, rather than (1/9)(n-1), as would be expected from a sequence of such gates. We suggest some quantum information tasks which could be demonstrated using these circuits, such as parity checking and cluster-state computation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that quantum information can be encoded into entangled states of multiple indistinguishable particles in such a way that any inertial observer can prepare, manipulate, or measure the encoded state independent of their Lorentz reference frame. Such relativistically invariant quantum information is free of the difficulties associated with encoding into spin or other degrees of freedom in a relativistic context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photonic quantum-information processing schemes, such as linear optics quantum computing, and other experiments relying on single-photon interference, inherently require complete photon indistinguishability to enable the desired photonic interactions to take place. Mode-mismatch is the dominant cause of photon distinguishability in optical circuits. Here we study the effects of photon wave-packet shape on tolerance against the effects of mode mismatch in linear optical circuits, and show that Gaussian distributed photons with large bandwidth are optimal. The result is general and holds for arbitrary linear optical circuits, including ones which allow for postselection and classical feed forward. Our findings indicate that some single photon sources, frequently cited for their potential application to quantum-information processing, may in fact be suboptimal for such applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review the field of quantum optical information from elementary considerations to quantum computation schemes. We illustrate our discussion with descriptions of experimental demonstrations of key communication and processing tasks from the last decade and also look forward to the key results likely in the next decade. We examine both discrete (single photon) type processing as well as those which employ continuous variable manipulations. The mathematical formalism is kept to the minimum needed to understand the key theoretical and experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diagnosis of ocular disease is increasingly important in optometric practice and there is a need for cost effective point of care assays to assist in that. Although tears are a potentially valuable source of diagnostic information difficulties associated with sample collection and limited sample size together with sample storage and transport have proved major limitations. Progressive developments in electronics and fibre optics together with innovation in sensing technology mean that the construction of inexpensive point of care fibre optic sensing devices is now possible. Tear electrolytes are an obvious family of target analytes, not least to complement the availability of devices that make the routine measurement of tear osmolarity possible in the clinic. In this paper we describe the design, fabrication and calibration of a fibre-optic based electrolyte sensor for the quantification of potassium in tears using the ex vivo contact lens as the sample source. The technology is generic and the same principles can be used in the development of calcium and magnesium sensors. An important objective of this sensor technology development is to provide information at the point of routine optometric examination, which would provide supportive evidence of tear abnormality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for measurement and visualization of the complex transmission coefficient of 2-D micro- objects is proposed. The method is based on calculation of the transmission coefficient from the diffraction pattern and the illumination aperture function for monochromatic light. A phase-stepping method was used for diffracted light phase determination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research pursued the conceptualization, implementation, and verification of a system that enhances digital information displayed on an LCD panel to users with visual refractive errors. The target user groups for this system are individuals who have moderate to severe visual aberrations for which conventional means of compensation, such as glasses or contact lenses, does not improve their vision. This research is based on a priori knowledge of the user's visual aberration, as measured by a wavefront analyzer. With this information it is possible to generate images that, when displayed to this user, will counteract his/her visual aberration. The method described in this dissertation advances the development of techniques for providing such compensation by integrating spatial information in the image as a means to eliminate some of the shortcomings inherent in using display devices such as monitors or LCD panels. Additionally, physiological considerations are discussed and integrated into the method for providing said compensation. In order to provide a realistic sense of the performance of the methods described, they were tested by mathematical simulation in software, as well as by using a single-lens high resolution CCD camera that models an aberrated eye, and finally with human subjects having various forms of visual aberrations. Experiments were conducted on these systems and the data collected from these experiments was evaluated using statistical analysis. The experimental results revealed that the pre-compensation method resulted in a statistically significant improvement in vision for all of the systems. Although significant, the improvement was not as large as expected for the human subject tests. Further analysis suggest that even under the controlled conditions employed for testing with human subjects, the characterization of the eye may be changing. This would require real-time monitoring of relevant variables (e.g. pupil diameter) and continuous adjustment in the pre-compensation process to yield maximum viewing enhancement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although trapped ion technology is well-suited for quantum information science, scalability of the system remains one of the main challenges. One of the challenges associated with scaling the ion trap quantum computer is the ability to individually manipulate the increasing number of qubits. Using micro-mirrors fabricated with micro-electromechanical systems (MEMS) technology, laser beams are focused on individual ions in a linear chain and steer the focal point in two dimensions. Multiple single qubit gates are demonstrated on trapped 171Yb+ qubits and the gate performance is characterized using quantum state tomography. The system features negligible crosstalk to neighboring ions (< 3e-4), and switching speeds comparable to typical single qubit gate times (< 2 us). In a separate experiment, photons scattered from the 171Yb+ ion are coupled into an optical fiber with 63% efficiency using a high numerical aperture lens (0.6 NA). The coupled photons are directed to superconducting nanowire single photon detectors (SNSPD), which provide a higher detector efficiency (69%) compared to traditional photomultiplier tubes (35%). The total system photon collection efficiency is increased from 2.2% to 3.4%, which allows for fast state detection of the qubit. For a detection beam intensity of 11 mW/cm2, the average detection time is 23.7 us with 99.885(7)% detection fidelity. The technologies demonstrated in this thesis can be integrated to form a single quantum register with all of the necessary resources to perform local gates as well as high fidelity readout and provide a photon link to other systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical nanofibres (ONFs) are very thin optical waveguides with sub-wavelength diameters. ONFs have very high evanescent fields and the guided light is confined strongly in the transverse direction. These fibres can be used to achieve strong light-matter interactions. Atoms around the waist of an ONF can be probed by collecting the atomic fluorescence coupling or by measuring the transmission (or the polarisation) of the probe beam sent through it. This thesis presents experiments using ONFs for probing and manipulating laser-cooled 87Rb atoms. As an initial experiment, a single mode ONF was integrated into a magneto-optical trap (MOT) and used for measuring the characteristics of the MOT, such as the loading time and the average temperature of the atom cloud. The effect of a near-resonant probe beam on the local temperature of the cold atoms has been studied. Next, the ONF was used for manipulating the atoms in the evanescent fields region in order to generate nonlinear optical effects. Four-wave mixing, ac Stark effect (Autler-Townes splitting) and electromagnetically induced transparency have been observed at unprecedented ultralow power levels. In another experiment, a few-mode ONF, supporting only the fundamental mode and the first higher order mode group, has been used for studying cold atoms. A higher pumping rate of the atomic fluorescence into the higher order fibreguided modes and more interactions with the surrounding atoms for higher order mode evanescent light, when compared to signals for the fundamental mode, have been identified. The results obtained in the thesis are particularly for a fundamental understanding of light-atom interactions when atoms are near a dielectric surface and also for the development of fibre-based quantum information technologies. Atoms coupled to ONFs could be used for preparing intrinsically fibre-coupled quantum nodes for quantum computing and the studies presented here are significant for a detailed understanding of such a system.