972 resultados para indian ocean
Resumo:
The 11 April 2012 earthquakes (M-w 8.6 and M-w 8.2) were sourced within the Northern Wharton Basin in the northeastern part of the Indo-Australian diffuse plate boundary. This unusually active oceanic intraplate region has generated many large earthquakes in the past, most of which are believed to have occurred by strike-slip motion, triggered by the NW-SE oriented compressional stresses acting across the Indian and Australian plates. In the aftermath of the 2004 megathrust earthquake along the nearby Sunda Trench, increased seismicity in the Northern Wharton Basin is attributed to the stress transfer from the Sumatra-Andaman plate boundary. Models proposed for the April 2012 earthquakes differ somewhat in details but partly attribute their complex rupture to the reactivation of pre-existing structures. These structures include previously mapped N-S trending fracture zones within the Northern Wharton Basin and E-W lineations across the Ninetyeast Ridge. In this paper, we review the regional tectonics and past seismicity on the Indo-Australian Plate in order to understand the seismotectonic setting of the April 2012 Indian Ocean earthquakes. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
The M-w 8.6 and 8.2 strike-slip earthquakes that struck the northeast Indian Ocean on 11 April 2012 resulted in coseismic deformation both at near and distant sites. The slip distribution, deduced using seismic-wave analysis for the orthogonal faults that ruptured during these earthquakes, is sufficient to predict the coseismic displacements at the Global Positioning System (GPS) sites, such as NTUS, PALK, and CUSV, but fall short at four continuous sites in the Andaman Islands region. Slip modeling, for times prior to the events, suggests that the lower portion of the thrust fault beneath the Andaman Islands has been slipping at least at the rate of 40 cm/yr, in response to the 2004 Sumatra-Andaman coseismic stress change. Modeling of GPS displacements suggests that the en echelon and orthogonal fault ruptures of the 2012 intraplate oceanic earthquakes could have possibly accelerated the ongoing slow slip, along the lower portion of the thrust fault beneath the islands with a month-long slip of 4-10 cm. The misfit to the coseismic GPS displacements along the Andaman Islands could be improved with a better source model, assuming that no local process contributed to this anomaly.
Resumo:
The 2004 earthquake left several traces of coseismic land deformation and tsunami deposits, both on the islands along the plate boundary and distant shores of the Indian Ocean rim countries. Researchers are now exploring these sites to develop a chronology of past events. Where the coastal regions are also inundated by storm surges, there is an additional challenge to discriminate between the deposits formed by these two processes. Paleo-tsunami research relies largely on finding deposits where preservation potential is high and storm surge origin can be excluded. During the past decade of our work along the Andaman and Nicobar Islands and the east coast of India, we have observed that the 2004 tsunami deposits are best preserved in lagoons, inland streams and also on elevated terraces. Chronological evidence for older events obtained from such sites is better correlated with those from Thailand, Sri Lanka and Indonesia, reiterating their usefulness in tsunami geology studies. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Interannual variation of Indian summer monsoon rainfall (ISMR) is linked to El Nino-Southern oscillation (ENSO) as well as the Equatorial Indian Ocean oscillation (EQUINOO) with the link with the seasonal value of the ENSO index being stronger than that with the EQUINOO index. We show that the variation of a composite index determined through bivariate analysis, explains 54% of ISMR variance, suggesting a strong dependence of the skill of monsoon prediction on the skill of prediction of ENSO and EQUINOO. We explored the possibility of prediction of the Indian rainfall during the summer monsoon season on the basis of prior values of the indices. We find that such predictions are possible for July-September rainfall on the basis of June indices and for August-September rainfall based on the July indices. This will be a useful input for second and later stage forecasts made after the commencement of the monsoon season.
Resumo:
Oceanic intraplate earthquakes are known to occur either on active ridge-transform structures or by reactivation of their inactive counterparts, generally referred to as fossil ridges or transforms. The Indian Ocean, one of the most active oceanic intraplate regions, has generated large earthquakes associated with both these types of structures. The moderate earthquake that occurred on 21 May 2014 (M-w 6.1) in the northern Bay of Bengal followed an alternate mechanism, as it showed no clear association either with active or extinct ridge-transform structures. Its focal depth of >50 km is uncommon but not improbable, given the similar to 90 Ma age of the ocean floor with 12-km-thick overlying sediments. No tectonic features have been mapped in the near vicinity of its epicenter, the closest being the 85 degrees E ridge, located similar to 100 km to its west, hitherto regarded as seismically inactive. The few earthquakes that have occurred here in the past are clustered around its southern or northern limits, and a few are located midway, at around 10 degrees N. The 2014 earthquake, sourced close to the northern cluster, seems to be associated with a northwest-southeast-oriented fracture, located on the eastern flanks of the 85 degrees E ridge. If this causal association is possible, we believe that reactivation of fossil hotspot trails could be considered as another mechanism for oceanic intraplate seismicity.
Resumo:
This is the proceedings of the Indian Ocean Conference "Forging Unity: Coastal Communities and the Indian Ocean's Future". It contains papers, presentations and vision statement of the conference.
Resumo:
The West Indian Ocean is rich in biodiversity and marine resources. This paper gives an overview of fisheries development and resource management in the region. There are many shared issues that must be addressed within countries and at the regional level. These are illustrated by examples from three countries. In Mozambique the issues of lack of information about artisanal fisheries, excessive harvesting of juveniles and conflicts between artisanal and commercial sectors are highlighted. Elements in addressing this include targeted research and decision-making support tools. The challenges faced in Somalia stem primarily from the political instability that contributed to an absence of sound fisheries policy. An example of a highly participatory process to develop the policy provides a model for other countries. In Tanzania, the issue of dynamite fishing was addressed by local communities initiating a program to promote wise use of the resources. There is a clear opportunity for better collaboration and greater integration of fisheries research and management on a regional basis. There is also much to be learnt by the sharing of experiences between countries. This has been initiated by some recently launched regional cooperation projects, but there are still many challenges facing this region.
Resumo:
The length-weight relationship of 29 marine fish species form Reunion Island (SW Indian Ocean) belonging to 14 families were computed. Data from 5,340 individuals were used for this purpose. Fish were sampled using different techniques, mainly with rotenone poisoning on coral reef flats, beach seine and handlines on shallow coastal bays, and longline fishing in the nearby open sea.
Resumo:
Skipjack tuna, Katsuwonus pelamis, and yellowfin tuna, Thunnus albacares, together comprise the most important component of Indian Ocean tuna catches. Catches of these species by Indian Ocean fisheries have been increasing over the last decade and totaled 262,300 metric tons (t) in 1986 (Fig. 1; Table 1). Skipjack tuna was the most important species at 32 percent of the total tuna catch in 1986; yellowfin tuna was the second most important at 25 percent. Skipjack tuna are found throughout the Indian Ocean from the Gulf of Arabia in the north to lat. 40°S (Fig. 2). Yellowfin tuna are also distributed throughout the ocean to about lat. 50�
Resumo:
The effects of El Niño–Southern Oscillation events on catches of Bigeye Tuna (Thunnus obesus) in the eastern Indian Ocean (EIO) off Java were evaluated through the use of remotely sensed environmental data (sea-surface-height anomaly [SSHA], sea-surface temperature [SST], and chlorophyll a concentration), and Bigeye Tuna catch data. Analyses were conducted for the period of 1997–2000, which included the 1997–98 El Niño and 1999–2000 La Niña events. The empirical orthogonal function (EOF) was applied to examine oceanographic parameters quantitatively. The relationship of those parameters to variations in catch distribution of Bigeye Tuna was explored with a generalized additive model (GAM). The mean hook rate was 0.67 during El Niño and 0.44 during La Niña, and catches were high where SSHA ranged from –21 to 5 cm, SST ranged from 24°C to 27.5°C, and chlorophyll-a concentrations ranged from 0.04 to 0.16 mg m–3. The EOF analysis confirmed that the 1997–98 El Niño affected oceanographic conditions in the EIO off Java. The GAM results indicated that SST was better than the other environmental factors (SSHA and chlorophyll-a concentration) as an oceanographic predictor of Bigeye Tuna catches in the region. According to the GAM predictions, the highest probabilities (70–80%) for Bigeye Tuna catch in 1997–2000 occurred during oceanographic conditions during the 1997–98 El Niño event.
Resumo:
The reproductive biology of Yellowfin Tuna (Thunnus albacares) in the western Indian Ocean was investigated from samples collected in 2009 and 2010. In our study, 1012 female Yellowfin Tuna were sampled: 320 fish on board a purse seiner and 692 fish at a Seychelles cannery. We assessed the main biological parameters that describe reproductive potential: maturity, spawning seasonality, fish condition, and fecundity. The length at which 50% of the female Yellowfin Tuna population matures (L50) was estimated at 75 cm in fork length (FL) when the maturity threshold was established at the cortical alveolar stage of oocyte development. To enable comparison with previous studies, L50 also was estimated with maturity set at the vitellogenic stage of oocyte development; this assessment resulted in a higher value of L50 at 102 cm FL. The main spawning season, during which asynchrony in reproductive timing among sizes was observed, was November–February and a second peak occurred in June. Smaller females (<100 cm FL) had shorter spawning periods (December to February) than those (November to February and June) of large individuals, and signs of skip-spawning periods were observed among small females. The Yellowfin Tuna followed a “capital-income” breeder strategy during ovarian development, by mobilizing accumulated energy while using incoming energy from feeding. The mean batch fecundity for females 79–147 cm FL was estimated at 3.1 million oocytes, and the mean relative batch fecundity was 74.4 oocytes per gram of gonad-free weight. Our results, obtained with techniques defined more precisely than techniques used in previous studies in this region, provide an improved understanding of the reproductive cycle of Yellowfin Tuna in the western Indian Ocean.
Resumo:
Bycatch taken by the tuna purse-seine fishery from the Indian Ocean pelagic ecosystem was estimated from data collected by scientific observers aboard Soviet purse seiners in the western Indian Ocean (WIO) during 1986–92. A total of 494 sets on free-swimming schools, whale-shark-associated schools, whale-associated schools, and log-associated schools were analyzed. More than 40 fish species and other marine animals were recorded. Among them only two species, yellow-fin and skipjack tunas, were target species. Average levels of bycatch were 0.518 metric tons (t) per set, and 27.1 t per 1000 t of target species. The total annual purse-seine catch of yellowfin and skipjack tunas by principal fishing nations in the WIO during 1985–94 was 118,000–277,000 t. Nonrecorded annual bycatch for this period was estimated at 944–2270 t of pelagic oceanic sharks, 720–1877 t of rainbow runners, 705–1836 t of dolphinfishes, 507–1322 t of triggerfishes, 113–294 t of wahoo, 104–251 t of billfishes, 53–112 t of mobulas and mantas, 35–89 t of mackerel scad, 9–24 t of barracudas, and 67–174 t of other fishes. In addition, turtle bycatch and whale mortalities may have occurred. Because the bycatches were not recorded by some purse-seine vessels, it was not possible to assess the full impact of the fisheries on the pelagic ecosystem of the Indian Ocean. The first step to solving this problem is for the Indian Ocean Tuna Commission to establish a pro-gram in which scientific observers are placed on board tuna purse-seine and longline vessels fishing in the WIO.
Resumo:
Following a brief outline of the physiography of the Indian Ocean, an examination is made of the current situation regarding contamination of the environment. Prominent marine pollutants and the consequences of the marine disposal are discussed, considering in particular oil pollution, heavy metal pollution, agricultural wastes and domestic wastes. Research activities conducted in the area investigating the levels of marine pollution are detailed, and an evaluation made of future prospects concerning the monitoring and control of pollution.
Resumo:
Several specimens of a porcellanid crab Raphidopus ciliatus are being reported for the first time from the northern Arabian Sea, extending the range of the species into the Indian Ocean. Specimens were found in by-catches landing at fish harbour, four specimens were recovered from stomachs of noncommercial fish, Batrachus grunniens. Salient features of the species are described. Individual variations specially noted.