974 resultados para hyperarousal of central nervous system
Resumo:
A dengue fever case is described in a 58-year-old male patient with febrile illness and thrombocytopenia complicated by neurological involvement characterized by transverse myelitis followed by weakness of both legs and flaccid paralysis. Muscle strength was much diminished and bilateral areflexia was observed. Dengue 2 (DEN-2) virus was isolated and the patient sero-converted by hemagglutination-inhibition and IgM-ELISA tests. The RT-PCR test was positive to DEN-2 in acute phase serum and culture supernatant, but negative in the cerebrospinal fluid. After three weeks of hospitalization the patient was discharged. No other infectious agent was detected in the blood and cerebrospinal fluid samples. The patient had full recovery from paralysis six months after the onset of DEN-2 infection.
Resumo:
Clinical involvement of the nervous system in visceral larva migrans due to Toxocara is rare, although in experimental animals the larvae frequently migrate to the brain. A review of the literature from the early 50's to date found 29 cases of brain involvement in toxocariasis. In 20 cases, various clinical and laboratory manifestations of eosinophilic meningitis, encephalitis, myelitis or radiculopathy were reported. We report two children with neurological manifestations, in which there was cerebrospinal fluid pleocytosis with marked eosinophilia and a positive serology for Toxocara both in serum and CSF. Serology for Schistosoma mansoni, Cysticercus cellulosae, Toxoplasma and cytomegalovirus were negative in CSF, that was sterile in both cases. Improvement of signs and symptoms after specific treatment (albendazole or thiabendazole) was observed in the two cases. A summary of data described in the 25 cases previously reported is presented and we conclude that in cases of encephalitis and myelitis with cerebrospinal fluid pleocytosis and eosinophilia, parasitic infection of the central nervous system should be suspected and serology should be performed to establish the correct diagnosis and treatment.
Resumo:
Abstract: A case of dengue virus 3 (DENV-3) genotype I infection with neurological manifestations occurred in Belo Horizonte, Minas Gerais in October 2012. The serotype was detected by PCR, and the genotype was assessed by sequencing and phylogenetic analysis of the C-prM region. The virus causing neurological manifestations clustered with other sequences of DENV-3 genotype I. Because neurological manifestations of DENV are possibly misdiagnosed in Brazil, this study serves as an alert of the importance of DENV diagnoses in CNS infections.
Resumo:
INTRODUCTION: Traumatic spinal cord injury is one of the most disabling conditions occurring in man and thus stimulates a strong interest in its histopathological, biochemical, and functional changes, primarily as we search for preventive and therapeutic methods. PURPOSE: To develop an experimental model for transplantation of cells from the fetal rat central nervous system to the site of an injured spinal cord of an adult rat in which the transplanted cells survive and become integrated. This experimental model will facilitate investigations of factors that promote regeneration and functional recovery after spinal cord trauma. MATERIAL AND METHODS: Fifteen adult Wistar rats underwent laminectomy, and an spinal cord lesion was made with microdissection. Fetal spinal cord tissue was then transplanted to the site of the injury. The rats were monitored over a 48-hour period, and then their vertebral column was completely removed for histological analysis. RESULTS: In 60% of transplanted rats, the fetal tissue at the injured site remained viable in the site of the lesion.
Resumo:
Neurological disorders are a major concern in modern societies, with increasing prevalence mainly related with the higher life expectancy. Most of the current available therapeutic options can only control and ameliorate the patients’ symptoms, often be-coming refractory over time. Therapeutic breakthroughs and advances have been hampered by the lack of accurate central nervous system (CNS) models. The develop-ment of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of novel therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmentally, anatomically and physiologically) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity). The in vitro recapitulation of CNS phenotypic and functional features requires the implementation of advanced culture strategies that enable to mimic the in vivo struc-tural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. This thesis aimed at the development of novel human 3D in vitro CNS models by integrat-ing agitation-based culture systems and a wide array of characterization tools. Neural differentiation of hNSC as 3D neurospheres was explored in Chapter 2. Here, it was demonstrated that human midbrain-derived neural progenitor cells from fetal origin (hmNPC) can generate complex tissue-like structures containing functional dopaminergic neurons, as well as astrocytes and oligodendrocytes. Chapter 3 focused on the development of cellular characterization assays for cell aggregates based on light-sheet fluorescence imaging systems, which resulted in increased spatial resolu-tion both for fixed samples or live imaging. The applicability of the developed human 3D cell model for preclinical research was explored in Chapter 4, evaluating the poten-tial of a viral vector candidate for gene therapy. The efficacy and safety of helper-dependent CAV-2 (hd-CAV-2) for gene delivery in human neurons was evaluated, demonstrating increased neuronal tropism, efficient transgene expression and minimal toxicity. The potential of human 3D in vitro CNS models to mimic brain functions was further addressed in Chapter 5. Exploring the use of 13C-labeled substrates and Nucle-ar Magnetic Resonance (NMR) spectroscopy tools, neural metabolic signatures were evaluated showing lineage-specific metabolic specialization and establishment of neu-ron-astrocytic shuttles upon differentiation. Chapter 6 focused on transferring the knowledge and strategies described in the previous chapters for the implementation of a scalable and robust process for the 3D differentiation of hNSC derived from human induced pluripotent stem cells (hiPSC). Here, software-controlled perfusion stirred-tank bioreactors were used as technological system to sustain cell aggregation and dif-ferentiation. The work developed in this thesis provides practical and versatile new in vitro ap-proaches to model the human brain. Furthermore, the culture strategies described herein can be further extended to other sources of neural phenotypes, including pa-tient-derived hiPSC. The combination of this 3D culture strategy with the implemented characterization methods represents a powerful complementary tool applicable in the drug discovery, toxicology and disease modeling.
Resumo:
INTRODUCTION: Neuroimaging studies suggest that obese people might show hyperactivity of brain areas regarding reward processing, and hypoactivity of brain areas concerning cognitive control, when exposed to food cues. Although the effects of bariatric surgery on the central nervous system and eating behavior are well known, few studies have used neuroimage techniques with the aim of investigating the central effects of bariatric surgery in humans. OBJECTIVES: This paper systematically and critically reviews studies using functional neuroimaging to investigate changes on the patterns of activation of central areas related to the regulation of eating behavior after bariatric surgery. METHOD: A search on the databases Medline, Web of Science, Lilacs and Science Direct on Line, was conducted in February 2013, using the keywords "Neuroimaging", "Positron-Emission Tomography", "Magnetic Resonance Imaging", "Gastric Bypass", "Gastroplasty", "Jejunoileal Bypass", "Bariatric Surgery". RESULTS: Seven manuscripts were included; the great majority studied the central effects of Roux en Y gastric bypass, using positron emission tomography or functional magnetic resonance. CONCLUSIONS: Bariatric surgery might normalize the activity of central areas concerned with reward and incentive salience processing, as the nucleus accumbens and mesencephalic tegmental ventral area, as well as circuitries processing behavioral inhibition, as the dorsolateral prefrontal cortex.
Resumo:
The blood brain barrier (BBB) and the blood cerebrospinal fluid barrier (BCSFB) form the barriers of the brain. These barriers are essential not only for the protection of the brain, but also in regulating the exchange of cells and molecules in and out of the brain. The choroid plexus (CP) epithelial cells and the arachnoid membrane form the BCSFB. The CP is structurally divided into two independent compartments: one formed by a unique and continuous line of epithelial cells that rest upon a basal lamina; and, a second consisting of a central core formed by connective and highly vascularized tissue populated by diverse cell types (fibroblasts, macrophages and dendritic cells). Here, we review how the CP transcriptome and secretome vary depending on the nature and duration of the stimuli to which the CP is exposed. Specifically, when the peripheral stimulation is acute the CP response is rapid, strong and transient, whereas if the stimulation is sustained in time the CP response persists but it is weaker. Furthermore, not all of the epithelium responds at the same time to peripheral stimulation, suggesting the existence of a synchrony system between individual CP epithelial cells.
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2014
Resumo:
Lankesterella alencari n. sp. a Sporozoa that occur in the blood and CNS of the South American frog Leptodactylus acellatus is described. Since the tissue forms of this parasite have been previously reported as belonging to the genus Toxoplasma, we attempted in fection of 2 species of amphibia (Bufo marinus an dLeptodactylus ocellatus) with a Toxoplasma strain of human origen; inoculation was by intraperitoneal injection of parasite-containing ascitic fluid from infected mice. Attempt of experimental inoculation of the parasite found in the CNS of L. ocellatus in a highly susceptible host (mice) was unsuccessful. These results suggest that Toxoplasma does not occur naturally in the amphibia; be related to Toxoplasma is excluded. The following genera of haematozoa found in brazilian amphibia have been considered briedfly: Haemobartonella, Cytamoeba, Dactylosoma, Hepatozoon and Trypanosoma.
Resumo:
We have recenty studied several natural product constituents which have effects on the CNS. (1) Tetrahydropalmatine (THP) and its analogues were isolated from Corydalis ambigua and various species of Stephania. (+)-THP and (-)-THP posses not only analgesic activity, but also exert sedative-tranquillizing and hypnotic actions. Results of receptor binding assay and their pre-and post-synaptic effects on dopaminergic system indicate that (-)-THP and (-)-stepholidine are dopamine receptor antagonists while (+)-THP is a selective dopamine depletor. (2) 3-Acetylaconitine (AAC) is an alkaloid isolated from Aconitum flavum. The relative potency of analgesic action of AAC was 5.1-35.6 and 1250-3912 times that of morphine and aspirin, respectively. The analgesic effect of AAC was antagonized by naloxone, but was eliminated by reserpine. In monkeys, after AAC was injected for 92 days, no abstinence syndrome was seen after sudden AAC withdrawal or when challenged with nalorphine. (3) Huperzine A (Hup-A) is an alkaloid isolated from Huperzia serrata which was found to be a selective ChE inhibitor and could improve learning and retrieval process. Preliminary clinical studies showed that Hup-A improve short-and long-term memory in patients of cerebral arteriosclerosis with memory impairment. (4) Ranamargarin is a new tetradecapeptide isolated from the skin of the Chines frog Rana margaratae. This peptide may mainly act on NK-1 receptor.
Resumo:
Intrathecal synthesis of human T-lymphotropic virus type 1 (HTLV-1) antibodies (Abs) represents conclusive evidence of a specific immune response in the central nervous system of HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients. Western blotting (WB) for HTLV Abs in serum is a confirmatory test for HTLV-1 infection. The aim of this study was to standardise the Western blot to demonstrate the intrathecal pattern of Abs against HTLV-1 proteins in HAM/TSP patients. Paired cerebrospinal fluid (CSF) and serum samples were selected from 20 patients with definite HAM/TSP, 19 HTLV-1 seronegative patients and two HTLV-1 patients without definite HAM/TSP. The presence of reactive bands of greater intensity in the CSF compared to serum (or bands in only the CSF) indicated the intrathecal synthesis of anti-HTLV-1 Abs. All definite HAM/TSP patients presented with an intrathecal synthesis of anti-HTLV-1 Abs; these Abs were not detected in the control patients. The most frequent intrathecal targets of anti-HTLV-1 Abs were GD21, rgp46-I and p24 and, to a lesser extent, p19, p26, p28, p32, p36, p53 gp21 and gp46. The intrathecal immune response against env (GD21 and rgp46-I) and gag (p24) proteins represents the most important humoral pattern in HAM/TSP. This response may be used as a diagnostic marker, considering the frequent association of intrathecal anti-HTLV-1 Ab synthesis with HAM/TSP and the pathogenesis of this neurological disease.
Resumo:
There is very limited data on isolated systemic relapses of primary central nervous system lymphomas (PCNSL). We retrospectively reviewed the clinical characteristics and outcome of 10 patients with isolated systemic disease among 209 patients with PCNSL mainly treated with methotrexate-based chemotherapy (CT) with or without radiation therapy (RT). Isolated systemic relapse remained rare (4.8%, 10/209 patients). Median time from initial diagnosis to relapse was 33 months (range, 3-94). Sites of relapse were mostly extranodal. Three patients presented with early extra-cerebral (EC) relapse 3, 5 and 8 months from the beginning of initial treatment, respectively, and 7 patients had later relapses (range, 17-94 months). Treatment at relapse included surgery alone, RT alone, CT with or without radiotherapy, or CT with autologous stem cell transplantation (ASCT). Median overall survival (OS) after relapse was 15.5 months (range, 5.8-24.5) compared to 4.6 months (range, 3.6-6.5) for patients with central nervous system (CNS) relapse (p = 0.35). In conclusion, isolated systemic relapses exist but are infrequent. Early EC relapse suggests the presence of systemic disease undetectable by conventional evaluation at initial diagnosis. Patient follow-up must be prolonged because systemic relapse can occur as late as 10 years after initial diagnosis. Whether EC relapses of PCNSL have a better prognosis than CNS relapses needs to be assessed in a larger cohort. Copyright © 2010 John Wiley & Sons, Ltd.