983 resultados para hydrothermal treatment
Resumo:
Using a series of partial phase transitions, an effective photocatalyst with fibril morphology was prepared. The catalytic activities of these materials were tested against phenol and herbicide in water. Both H-titanate and TiO2-(B) fibres decorated with anatase nanocrystals were studied. It was found that anatase coated TiO2-(B) fibres prepared by a 45 h hydrothermal treatment followed by calcination were not only superior photocatalysts but could also be readily separated from the slurry after photocatalytic reactions due to its fibril morphology.
Resumo:
Cerium ions (Ce3+) can beselectively doped into the TiO2(B) core of TiO2(B)/anatase core–shell nanofibers by means of a simple one-pot hydrothermal treatment of a starting material of hydrogen trititanate (H2Ti3O7) nanofibers. These Ce3+ ions (≈0.202 nm) are located on the (110) lattice planes of the TiO2(B) core in tunnels (width≈0.297 nm). The introduction of Ce3+ ions reduces the defects of the TiO2(B) core by inhibiting the faster growth of (110) lattice planes. More importantly, the redox potential of the Ce3+/Ce4+ couple (E0(Ce3+/Ce4+)=1.715 V versus the normal hydrogen electrode) is more negative than the valence band of TiO2(B). Therefore, once the Ce3+-doped nanofibers are irradiated by UV light, the doped Ce3+ ions in close vicinity to the interface between the TiO2(B) core and anatase nanoshell can efficiently trap the photogenerated holes. This facilitates the migration of holes from the anatase shell and leaves more photogenerated electrons in the anatase nanoshell, which results in a highly efficient separation of photogenerated charges in the anatase nanoshell. Hence, this enhanced charge-separation mechanism accelerates dye degradation and alcohol oxidation processes. The one-pot treatment doping strategy is also used to selectively dope other metal ions with variable oxidation states such as Co2+/3+ and Cu+/2+ ions. The doping substantially improves the photocatalytic activity of the mixed-phase nanofibers. In contrast, the doping of ions with an invariable oxidation state, such as Zn2+, Ca2+, or Mg2+, does not enhance the photoactivity of the mixed-phase nanofibers as the ions could not trap the photogenerated holes.
Resumo:
Development and application of inorganic adsorbent materials have been continuously investigated due to their variability and versatility. This Master thesis has expanded the knowledge in the field of adsorption targeting radioactive iodine waste and proteins using modified inorganic materials. Industrial treatment of radioactive waste and safety disposal of nuclear waste is a constant concern around the world with the development of radioactive materials applications. To address the current problems, laminar titanate with large surface area (143 m2 g−1) was synthesized from inorganic titanium compounds by hydrothermal reactions at 433 K. Ag2O nanocrystals of particle size ranging from 5–30 nm were anchored on the titanate lamina surface which has crystallographic similarity to that of Ag2O nanocrystals. Therefore, the deposited Ag2O nanocrystals and titanate substrate could join together at these surfaces between which there forms a coherent interface. Such coherence between the two phases reduces the overall energy by minimizing surface energy and maintains the Ag2O nanocrystals firmly on the outer surface of the titanate structure. The combined adsorbent was then applied as efficient adsorbent to remove radioactive iodine from water (one gram adsorbent can capture up to 3.4 mmol of I- anions) and the composite adsorbent can be recovered easily for safe disposal. The structure changes of the titanate lamina and the composite adsorbent were characterized via various techniques. The isotherm and kinetics of iodine adsorption, competitive adsorption and column adsorption using the adsorbent were studied to determine the iodine removal abilities of the adsorbent. It is shown that the adsorbent exhibited excellent trapping ability towards iodine in the fix-bed column despite the presence of competitive ions. Hence, Ag2O deposited titanate lamina could serve as an effective adsorbent for removing iodine from radioactive waste. Surface hydroxyl group of the inorganic materials is widely applied for modification purposes and modification of inorganic materials for biomolecule adsorption can also be achieved. Specifically, γ-Al2O3 nanofibre material is converted via calcinations from boehmite precursor which is synthesised by hydrothermal chemical reactions under directing of surfactant. These γ-Al2O3 nanofibres possess large surface area (243 m2 g-1), good stability under extreme chemical conditions, good mechanical strength and rich surface hydroxyl groups making it an ideal candidate in industrialized separation column. The fibrous morphology of the adsorbent also guarantees facile recovery from aqueous solution under both centrifuge and sedimentation approaches. By chemically bonding the dyes molecules, the charge property of γ-Al2O3 is changed in the aim of selectively capturing of lysozyme from chicken egg white solution. The highest Lysozyme adsorption amount was obtained at around 600 mg/g and its proportion is elevated from around 5% to 69% in chicken egg white solution. It was found from the adsorption test under different solution pH that electrostatic force played the key role in the good selectivity and high adsorption rate of surface modified γ-Al2O3 nanofibre adsorbents. Overall, surface modified fibrous γ-Al2O3 could be applied potentially as an efficient adsorbent for capturing of various biomolecules.
Resumo:
Hydrothermal treatment of a slurry of badly crystalline (beta(bc)) nickel hydroxide at different temperatures (65-170 degrees C) results in the progressive ordering of the structure by the step-wise elimination of disorders. Interstratification is eliminated at 140 degrees C, while cation vacancies are eliminated at 170 degrees C. A small percentage of stacking faults continue to persist even in `crystalline' samples. Electrochemical investigations show that the crystalline nickel hydroxide has a very low (0.4 e/Ni) reversible charge storage capacity. An incidence of at least 15% stacking faults combined with cation vacancies is essential for nickel hydroxide to perform close to its theoretical (1 e/ Ni) discharge capacity. (c) 2005 The Electrochemical Society.
Resumo:
Research on structure and magnetic properties of polynuclear metal complexes to understand the structural and chemical factors governing the electronic exchange coupling mediated by multi-atom bridging ligands is of growing interest. Hydrothermal treatment of Ni(NO3)(2)center dot 6H(2)O with N-(4-carboxyphenyl)iminodiacetic acid N-4(H(3)CPIDA)] at 150 degrees C yielded a 3D coordination polymer of general formula Ni-3{N-4( CPIDA)}(2)(H2O)(3)]center dot 6H(2)O (1). An analogous network of general formula Co-3{N-3(CPIDA)}(2)(H2O)(3)]center dot 3H(2)O (2) was synthesized using N-(3-carboxyphenyl) iminodiacetic acid N-3(H(3)CPIDA)] in combination with Co(NO3)(2)center dot 6H(2)O under identical reaction condition. Both the complexes contain trinuclear secondary building unit, and crystallized in monoclinic system with space groups C2/c (1) and P2(1)/c (2), respectively. Variable temperature magnetic characterization of these complexes in the temperature range of 2-300 K indicated the presence of overall ferromagnetic and antiferromagnetic behavior for 1 and 2, respectively. Density functional theory calculations (B3LYP functional) were performed for further insight on the trinuclear units to provide a qualitative theoretical interpretation on the overall magnetic behavior of the complexes 1 and 2. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Hexagonal Dy(OH)(3) and cubic Dy2O3 nanorods were prepared by hydrothermal method. Dy(OH)(3) nanorods was directly obtained at 180 degrees C for 20 h after hydrothermal treatment whereas subsequently heat treatment at 750 degrees C for 2 h gives pure cubic Dy2O3. SEM micrographs reveal that needle shaped rods with different sizes were observed in both the phases. TEM results also confirm this. The TL response of hexagonal Dy(OH)(3) and cubic Dy2O3 nanorods have been analyzed for gamma-irradiation over a wide range of exposures (1-5 kGy). TL glow peak intensity increases with gamma dose in both the phases. The activation energy (E), order of kinetics (6), and frequency factor (s) for both the phases have been determined using Chen's peak shape method. The simple glow curve shape, structure and linear response to gamma-irradiation over a large span of exposures makes the cubic Dy2O3 as a useful dosimetric material to estimate high exposures of gamma-rays. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we report a synthesis, characterization and electrochemical properties of V2O5 nanobelts. V2O5 nanobelts have been prepared via hydrothermal treatment of commercial V2O5 in acidic (HCl/H2SO4) medium at relatively low temperature (160 degrees C). The hydrothermally derived products have been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photo electron spectroscopy (XPS), UV-Vis spectroscopy, Scanning/Transmission electron microscopy (SEM/TEM). XRD pattern of V2O5 nanobelts show an orthorhombic phase. From the FTIR spectrum, the peak observed at 1018 cm-1 is characteristic of the stretching vibration mode of the terminal vanadyl, V = O. The UV-Vis absorption spectrum of V2O5 nanobelts show maximum absorbance at 430 nm, which was blue-shifted compared to that of bulk V2O5. TEM micrographs reveal that the products consist of nanobelts of 40-200 nm in thickness and several tens of micrometers in length. The electrochemical analysis shows an initial discharge capacity of 360 mAh g-1 and its almost stabilized capacity is reached to 250 mAh g-1 after 55 cycles. A probable reaction mechanism for the formation of orthorhombic V2O5 nanobelts is proposed.
Resumo:
This study demonstrates the synthesis of TiO2 nanobelts using solution combustion derived TiO2 with enhanced photocatalytic activity for dye degradation and bacterial inactivation. Hydrothermal treatment of combustion synthesized TiO2 resulted in unique partially etched TiO2 nanobelts and Ag3PO4 was decorated using the co-precipitation method. The catalyst particles were characterized using X-ray diffraction analysis, BET surface area analysis, diffuse reflectance and electron microscopy. The photocatalytic properties of the composites of Ag3PO4 with pristine combustion synthesized TiO2 and commercial TiO2 under sunlight were compared. Therefore the studies conducted proved that the novel Ag3PO4/unique combustion synthesis derived TiO2 nanobelt composites exhibited extended light absorption, better charge transfer mechanism and higher generation of hydroxyl and hole radicals. These properties resulted in enhanced photodegradation of dyes and bacteria when compared to the commercial TiO2 nanocomposite. These findings have important implications in designing new photocatalysts for water purification.
Resumo:
The acid sites in dealuminated HZSM-5 zeolite with crystal sizes down to the nanoscale were firstly characterized by the probe molecule trimethylphosphine (TMP). As evidenced by the combination of P-31 CP/MAS NMR, Al-27 MAS and H-1 --> Al-27 CP/MAS NMR measurements, the Bronsted acid sites of both microsized and nanosized HZSM-5 could be decreased upon the dealumination of zeolitic framework after hydrothermal treatment. At the same time, the appearance of Lewis acid sites was observed. The dealuminated nanosized HZSM-5 is easier to form Lewis acid sites than microsized HZSM-5, and the type of Lewis acid sites in nanosized HSM-5 is more than one. In addition, the origin of Lewis acid sites is mainly associated with the aluminum at ca. 30 ppm, in the Al-27 MAS NMR spectra, and only a part of which in the dealuminated HZSM-5 zeolite acts as Lewis acid sites. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Luminescent and mesoporous europium-doped bioactive glasses (MBG:Eu) were successfully synthesized by a two-step acid-catalyzed self-assembly process combined with hydrothermal treatment in an inorganic-organic system. The obtained MBG was performed as a drug delivery carrier to investigate the drug storage/release properties using ibuprofen (IBU) as a model drug. The structural, morphological, textural and optical properties were well characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N-2 adsorption/desorption, and photoluminescence (PL) spectra, respectively. The results reveal that the MBG exhibit the typical ordered characteristics of the hexagonal mesostructure. This composite shows sustained release profile with ibuprofen as the model drug. The IBU-loaded samples still show red luminescence of Eu3+ (D-5(0)-F-7(1, 2)) under UV irradiation, and the emission intensities of Eu3+ in the drug carrier system vary with the released amount of IBU, thus making the drug release be easily tracked and monitored by the change of the luminescence intensity.
Resumo:
In this work we demonstrate that hexagonal nanodisks of cadmium hydroxide with nanoporous structures could be fabricated by a facile hydrothermal treatment without using any templates or organic additives. With this method, the length of the hexagonal edge and thickness of the nanodisks can be adjusted through controlling the experimental conditions such as the pH value of the mother liquor and the initial concentration of the cadmium ion. On the basis of our experimental observations and understandings of the nanocrystal growth, the formation of the nanodisks is believed to mainly originate from the oriented attachment of small particles. Furthermore, the hexagonal Cd(OH)(2) nanodisks can be converted to CdO semiconductors with similar morphology by calcinations.
Resumo:
Ammonia adsorption studies reveal that the observed Lewis acidity in the zeolite MCM-22 is derived from at least two types of framework aluminum sites (Al(F)), that is, octahedral Al(F) and three-coordinate Al(F). Comparative ammonia or trimethylphosphine (TMP) adsorption experiments with MCM-22 confirm that octahedral Al species gives rise to the signal at delta(ISO) approximate to 0 in the (27)Al NMR spectrum; this is a superposition of two NMR signals from the different Al species on the water-re constructed zeolite surface. A sharp resonance assigned to framework Al reversibly transforms on ammonia adsorption to delta(ISO) (27)Al approximate to 55 from tetrahedral Al(F), while the broad peak is assigned to nonframework aluminium which results from hydrothermal treatment. This study also demonstrates the effectiveness of (27)Al magic angle spinning (MAS) and multiple quantum (MQ) MAS NMR spectroscopy as a technique for the study of zeolite reactions.
Resumo:
The thermal and hydrothermal stabilities of HZSM-5 zeolites with crystal sizes less than 100 nm have been studied by multinuclear solid-state NMR, combined with BET and XRD. As evidenced by Al-27 and Si-29 MAS as well as their corresponding cross-polarization/MAS NMR investigations, the thermal stability of nanosized HZSM-5 is not so good as that of microsized HZSM-5. This is due to two processes concerning dealumination and desilicification involved in the calcination of nanosized HZSM-5, while only the dealumination process is conducted in microsized HZSM-5 under the similar calcination process. The hydrothermal stability of nanosized HZSM-5 is, contrary to what was expected, not so bad as that of the microsized HZSM-5 in the course of steam treatment. The actual resistance of the hydrothermal stability to the crystal size of HZSM-5 can be ascribed to an active reconstruction of zeolitic framework through an effective filling of amorphous Si species into nanosized HZSM-5 during hydrothermal treatment. (C) 2001 Published by Elsevier Science B.V.
Resumo:
The TEM study of titanium-containing ZSM-5 zeolite before and after hydrothermal treatment was performed. The use of different TEM techniques, such as conventional TEM, HRTEM and EDX-line scans provides important information about the microscopic structure of the zeolite catalyst consisting from several phases. The hydrothermal treatment of zeolite powder leads to strong changes in the morphology of the constituting particles. They are characterized by a homogeneous structure before hydrothermal treatment while the occurrence of holes after thermal treatment was observed, These changes lead to the enrichment of zeolite with titanium which obviously enhance its catalytic activity. Some of the titanium surplus precipitates as TiO2 anatase nanoparticles within the holes. (C) 2001 Elsevier Science B.V. All rights reserved.