978 resultados para hydrophobic adhesive
Resumo:
Instrumented indentation has been used to investigate the mechanical properties of BETAMATE 1496 (R) Epoxy adhesive. The properties of the adhesive were analyzed by measuring its hardness and its Young`s modulus in samples extracted from six different positions of the front door of a commercial passenger vehicle in two phases of processing: after application of the adhesive in the door assembling (""pre-cured"" state) and after final cure in the painting oven (""cured"" state). Special attention was given to setting the optimal parameters (""creep"" time and unloading time step) for the instrumented indentation testing for the present application. Young`s modulus values around 1.1 +/- 0.2 GPa and hardness values around 0.15 +/- 0.05 GPa were obtained for all samples, irrespective of the variation of the indentation parameters in the testing procedure and of the relative position of the adhesive in the door frame in both states. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Hydrophilic dentin adhesives are prone to water sorption that adversely affects the durability of resin-dentin bonds. This study examined the feasibility of bonding to dentin with hydrophobic resins via the adaptation of electron microscopy tissue processing techniques. Hydrophobic primers were prepared by diluting 2,2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl] propane/triethyleneglycol dimethacrylate resins with known ethanol concentrations. They were applied to acid-etched moist dentin using an ethanol wet bonding technique that involved: (1) stepwise replacement of water with a series of increasing ethanol concentrations to prevent the demineralized collagen matrix from collapsing; (2) stepwise replacement of the ethanol with different concentrations of hydrophobic primers and subsequently with neat hydrophobic resin. Using the ethanol wet bonding technique, the experimental primer versions with 40, 50, and 75% resin exhibited tensile strengths which were not significantly different from commercially available hydrophilic three-step adhesives that were bonded with water wet bonding technique. The concept of ethanol wet bonding may be explained in terms of solubility parameter theory. This technique is sensitive to water contamination, as depicted by the lower tensile strength results from partial dehydration protocols. The technique has to be further improved by incorporating elements of dentin permeability reduction to avoid water from dentinal tubules contaminating water-free resin blends during bonding. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res 84A: 19-29, 2008.
Resumo:
We evaluated the ability of microemulsions containing medium-chain glycerides as penetration enhancers to increase the transdermal delivery of lipophilic (progesterone) and hydrophilic (adenosine) model drugs as well as the effects of an increase in surfactant blend concentration on drug transdermal delivery. Microemulsions composed of polysorbate 80, medium-chain glycerides, and propylene glycol (1:1:1, w/w/w) as surfactant blend, myvacet oil as the oily phase, and water were developed. Two microemulsions containing different concentrations of surfactant blend but similar water/oil ratios were chosen; ME-lo contained a smaller concentration of surfactant than ME-hi (47:20:33 and 63:14:23 surfactant/oil/water, w/w/w). Although in vitro progesterone and adenosine release from ME-lo and ME-hi was similar, their transdermal delivery was differently affected. ME-lo significantly increased the flux of progesterone and adenosine delivered across porcine ear skin (4-fold or higher, p < 0.05) compared to progesterone solution in oil (0.05 +/- 0.01 mu g/cm(2)/h) or adenosine in water (no drug was detected in the receptor phase). The transdermal flux of adenosine, but not of progesterone, was further increased (2-fold) by ME-hi, suggesting that increases in surfactant concentration represent an interesting strategy to enhance transdermal delivery of hydrophilic, but not of lipophilic, compounds. The relative safety of the microemulsions was assessed in cultured fibroblasts. The cytotoxicity of ME-lo and ME-hi was significantly smaller than sodium lauryl sulfate (considered moderate-to-severe irritant) at same concentrations (up to 50 mu g/mL), but similar to propylene glycol (regarded as safe), suggesting the safety of these formulations.
Resumo:
The recently discovered mesoporous molecular sieve MCM-41 was tested as an adsorbent for VOC removal. Its adsorption/desorption properties were evaluated and compared with other hydrophobic zeolites (silicalite-1 and zeolite Y) and a commercial activated carbon, BPL. The adsorption isotherms of some typical VOCs (benzene, carbon tetrachloride, and n-hexane) on MCM-41 are of type IV according to the IUPAC classification, drastically different from the other microporous adsorbents, indicating that VOCs, in the gas phase, have to be at high partial pressures in order to make the most of the new mesoporous material as an adsorbent for VOC removal. However, a proper modification of the pore openings of MCM-41 can change the isotherm types from type IV to type I without remarkable loss of the accessible pare volumes and, therefore, significantly enhance the adsorption performance at low partial pressures. Adsorption isotherms of water on these adsorbents are all of type V, demonstrating that they possess a similar hydrophobicity. Desorption of VOCs from MCM-41 could be achieved at lower temperatures (50-60 degrees C), while this had to be conducted at higher temperatures (100-120 degrees C) for microporous adsorbents, zeolites, and activated carbons.
Resumo:
Dimerisation of leucine zippers results from the parallel association of alpha-helices to form a coiled coil. Coiled coils comprise a heptad repeat, denoted as (abcdefg)(n), where residues at positions a and d are hydrophobic and constitute the core of the dimer interface. Charged amino acids at the e and g positions of the coiled coil are thought to be the major influence on dimerisation specificity through the formation of attractive and repulsive interhelical electrostatic interactions. However, the variability of a-position residues in leucine zipper transcription factors prompted us to investigate their influence on dimerisation specificity. We demonstrate that mutation of a single interfacial a-position Ala residue to either Val, Ile or Leu significantly alters the homo- and heterodimerisation specificities of the leucine zipper domain from the c-Jun transcription factor. These results illustrate the importance of a-position residues in controlling leucine zipper dimerisation specificity in addition to providing substantial contributions to dimer stability.
Resumo:
The purpose of this in vitro study was to verify through micro tensile bond test the bond strength of an adhesive system irradiated with Nd:YAG laser in dentine previously treated with Er:YAG laser. Twenty caries free extracted human third molars were used. The teeth were divided in four experimental groups (n = 5): (G1) control group; (G2) irradiation of the adhesive system with the Nd:YAG laser; (G3) dentin treatment with Er:YAG laser; (G4) dentin treatment with Er:YAG laser followed by the irradiation of the adhesive system with Nd:YAG laser. The Er:YAG laser fluency parameter for the dentin treatment was of 60 J/cm(2). ne adhesive system was irradiated with the Nd:YAG laser with fluency of 100 J/cm(2). Dental restorations were performed with Adper Single Bond 2/Z250. One tooth from each group was prepared for the evaluation of the adhesive interface under SEM and bond failure tests were also performed and evaluated. The statistical analysis showed statistical significant difference between the groups G1 and G3, G1 and G4, G2 and G3, and G2 and G4; and similarity between the groups G1 and G2, and G3 and G4. The adhesive failures were predominant in all the experimental groups. The SEM analysis showed an adhesive interface with features confirming the results of the mechanical tests. The Nd:YAG laser on the adhesive system did not influence the bond strength in dentin treated or not with the Er:YAG laser.
Resumo:
The tissue microarray (TMA) technique allows multiple tissue samples in a single block. Commercial adhesive tape is used to avoid the loss of tissue samples during the immunostaining process. Few reports exist in the literature comparing the use of these adhesive tapes to other adhesive techniques. The objective of this study was to compare loss of sections adhered to slides using commercial adhesive tapes versus using silanized only slides. TMA was constructed with varying tissues using a fixed-base device (Beecher Instruments), placing 108 cylinders of 1 mm diameter in duplicate, spaced 1.2 mm apart. Section of 4 mu m were cut from the TMA block and adhered to 30 silanized slides and 30 commercial glass slides using adhesive tape, according to manufacturer`s recommendations. Vimentin immunoexpression was evaluated by immunohistochemistry. Antigenic recovery was realized in citrate buffer using a microwave oven. Cylinder loss in the immunohistochemical process was quantified and expressed as: total (>80%), almost complete (75-79%), or partial (50-74%). The commercial adhesive tape group presented lesser total loss (1.1 versus 6.4%), almost complete loss (2.2 versus 3.5%), and partial loss (2.1 versus 3.8%) than the silanized slide group (ANOVA, P < 0.05). The sum of total and almost complete losses in the silanized slide group was 9.9%, greater than the losses in slides using commercial adhesive tapes (3.3%) and less than reported and considered acceptable in the literature (10-30%). In conclusion, the use of silanized only slides presents very satisfactory results, requires less training, and reduces costs significantly, thus justifying their use in research.
Resumo:
Background and Objectives: This study evaluated the hybrid layer (HL) morphology created by three adhesive systems (AS) on dentin surfaces treated with Er:YAG laser using two irradiation parameters. Study Design: Occlusal flat dentin surfaces of 36 human third molars were assigned into nine groups (n = 4) according to the following ASs: one bottle etch&rinse Single Bond Plus (3M ESPE), two-step Clearfil Protect Bond (Kuraray), and all-in-one S3 Bond (Kuraray) self-etching, which were labeled with rhodamine B or fluorescein isothiocyanate dextran and were applied to dentin surfaces that were irradiated with Er:YAG laser at either 120 (38.7 J/cm(2)) or 200 mJ/pulse (64.5 J/cm(2)), or were applied to untreated dentin surfaces (control group). The ASs were light-activated following MI and the bonded surfaces were restored with resin composite Z250 (3M ESPE). After 24 hours of storage in vegetable oil, the restored teeth were vertically, serially sectioned into 1-mm thick slabs, which had the adhesive interfaces analyzed with confocal laser microscope (CLSM-LSM 510 Meta). CLSM images were recorded in the fluorescent mode from three different regions along each bonded interface. Results: Non-uniform HL was created on laser-irradiated dentin surfaces regardless of laser irradiation protocol for all AS, while regular and uniform HL was observed in the control groups. ""Stretch mark""-like red lines were found within the HL as a result of resin infiltration into dentin microfissures, which were predominantly observed in 200 mJ/pulse groups regardless of AS. Poor resin infiltration into peritubular dentin was observed in most regions of adhesive interfaces created by all ASs on laser-irradiated dentin, resulting in thin resin tags with neither funnel-shaped morphology nor lateral resin projections. Conclusion: Laser irradiation of dentin surfaces at 120 or 200 mJ/pulse resulted in morphological changes in HL and resin tags for all ASs evaluated in the study. Lasers Surg. Med. 42:662-670, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Purpose: To assess the effects of three different dental adhesive systems on the formation of secondary root caries, in vitro, with a standardized interfacial gap in a filled cavity model. Methods: 40 sound human molars were selected and randomly assigned to four experimental groups: Clearfil SE Bond (CSEB), Xeno III (X-III), Scotchbond Multi-Purpose Plus (SBMP) and negative control (NC) without an adhesive system. After the standardized Class V cavity preparations on the buccal and lingual surfaces, restorations were placed with resin composite (Filtek Z250) using a standardized interfacial gap, using a 3 x 2 mm piece of 50 mu m metal matrix. The teeth were sterilized with gamma irradiation and exposed to a cariogenic challenge using a bacterial system with Streptococcus mutans. Depth and extension of wall lesions formed and the depth of outer lesions were measured by software coupled with light microscopy. Results: For wall lesion extension the ANOVA test showed differences between groups except between X-HI and SBMP (P= 0.294). The Tukey`s test of confidence intervals indicated smaller values for the CSEB group than for the others. For wall lesion depth the CSEB group also presented the smallest mean values of wall lesion depth when compared to the others (P< 0.0001) for all comparisons using Tukey`s test. Regarding outer lesion depth, all adhesives showed statistically similar behavior. SEM evaluation of the morphologic appearance of caries lesions confirmed the statistical results showing small caries lesion development for cavities restored with CSEB adhesive system, which may suggest that this adhesive system interdiffusion zone promoted a good interaction with subjacent dentin protecting the dental tissues from recurrent caries. (Am J Dent 2010;23:93-97).
Resumo:
Purpose: The objective of this in vitro study was to compare the degree of microleakage of composite restorations performed by lasers and conventional drills associated with two adhesive systems. Materials and Methods: Sixty bovine teeth were divided into 6 groups (n = 10). The preparations were performed in groups 1 and 2 with a high-speed drill (HID), in groups 3 and 5 with Er:YAG laser, and in groups 4 and 6 with Er,Cr:YSGG laser. The specimens were restored with resin composite associated with an etch-and-rinse two-step adhesive system (Single Bond 2 [SB]) (groups 1, 3, 4) and a self-etching adhesive (One-Up Bond F [OB]) (groups 2, 5, 6). After storage, the specimens were polished, thermocycled, immersed in 50% silver nitrate tracer solution, and then sectioned longitudinally. The specimens were placed under a stereomicroscope (25X) and digital images were obtained. These were evaluated by three blinded evaluators who assigned a microleakage score (0 to 3). The original data were submitted to Kruskal-Wallis and Mann-Whitney statistical tests. Results: The occlusal/enamel margins demonstrated no differences in microleakage for all treatments (p > 0.05). The gingival/dentin margins presented similar microleakage in cavities prepared with Er:YAG, Er,Cr:YSGG, and HD using the etch-and-rinse two-step adhesive system (SB) (p > 0.05); otherwise, both Er:YAG and Er,Cr:YSGG lasers demonstrated lower microleakage scores with OB than SB adhesive (p < 0.05). Conclusion: The microleakage score at gingival margins is dependent on the interaction of the hard tissue removal tool and the adhesive system used. The self-etching adhesive system had a lower microleakage score at dentin margins for cavities prepared with Er:YAG and Er,Cr:YSGG than the etch-and-rinse two-step adhesive system.
Resumo:
Purpose: The purpose of this study was to assess the influence of adhesive area delimitation on the microshear bond strength of different adhesives to dentin. Materials and Methods: Eighteen bovine incisors were sectioned and the exposed dentin surfaces were prepared with 600-grit SIC paper. These teeth were randomly divided into three groups, according to the adhesive to be applied: two-step etch-and-rinse Adper Single Bond 2 (3M ESPE), two-step self-etching Clearfil SE Bond (Kuraray), and one-step Clearfil S(3) Bond (Kuraray). On each dentin surface, 4 samples were built up with the composite resin Z100 (3M ESPE); on 2 of these, a suggested area delimitation technique was employed. After 24 h of storage in water at 37 degrees C, samples were subjected to the microshear bond strength test, and the failure modes were evaluated under optical and scanning electron microscopes. The obtained results were statistical analyzed using two-way ANOVA and Tukey`s test. Results: Groups without area delimitation presented significantly higher bond strength results (p < 0.05) and a higher incidence of cohesive failures. In these groups, fractures tended to occur beyond the limits of the actual adhesive area, while the area restriction technique succeeded in avoiding this phenomenon. The three adhesives performed similarly when area delimitation was employed (p > 0.05), but Clearfil S(3) Bond showed significantly higher bond strength results when no area delimitation was taken into account (p < 0.05). Conclusion: The extension of the adhesive area beyond the limits of the composite cylinder may play an important role in the results of microshear bond strength tests, while the suggested area delimitation technique may lead to less questionable outcomes.
Resumo:
Purpose: The aim of this in vitro study was to evaluate the microtensile bond strength (mu TBS) and hybrid layer morphology of different adhesive systems, either followed by treatment with Nd:YAG laser irradiation or not. Previous studies have shown the effects of Nd:YAG laser irradiation on the dentin surface at restoration margins, but there are few reports about the significance of the irradiation on the hybrid layer. Materials and Methods: The flattened coronal and root dentin samples of 24 bovine teeth were randomly divided into 8 groups, according to the adhesive system used - Scotchbond Multi Purpose (SBMP) or Clearfil SE Bond (CSEB) - and were either irradiated with Nd:YAG or not, with different parameters: 0.8 W/10 Hz, 0.8 W/20 Hz, 1.2 W/10 Hz, 1.2 W/20 Hz. The left sides of specimens were the control groups, and right sides were irradiated. A composite crown was built over bonded surfaces and stored in water (24 h at 37 degrees C). Specimens were sectioned vertically into slabs that were subjected to mu TBS testing and observed by SEM. Results: Control groups (27.81 +/- 1.38) showed statistically higher values than lased groups (21.37 +/- 0.99), and CSEB control group values (31.26 +/- 15.71) were statistically higher than those of SBMP (24.3 +/- 10.66). There were no significant differences between CSEB (20.34 +/- 10.01) and SBMP (22.43 +/- 9.82) lased groups. Among parameters tested, 0.8 W/10 Hz showed the highest value (25.54 +/- 11.74). Nd:YAG laser irradiation caused dentin to melt under the adhesive layer of both adhesive systems tested. Conclusion: With the parameters used in this study, Nd:YAG laser irradiation of the hybrid layer promoted morphological changes in dentin and negatively influenced the bond strength of both adhesive systems.
Resumo:
Purpose: The aim of this study was to detect the influence of (1) storage period of heparinized blood, (2) type of blood and presence of contaminant, (3) application mode of cleansing agents, and (4) efficacy of cleansing agents on contaminated enamel and dentin during the adhesion process of a one-step adhesive system. Materials and Methods: One hundred four human molars were sectioned into halves along the long axis for enamel and dentin tests. Heparinized and fresh blood were obtained from the same donor, applied and dried to maintain a layer of dry blood on the top of samples. The cleansing agents used were hydrogen peroxide, anionic detergent, and antiseptic solution. A one-step adhesive system (Clearfil S3 Bond) was applied on the dental surface, and composite resin cylinders were built up using Tygon tubing molds. After 24 h, the mu SBS test (1 mm/min) and fracture analysis were performed. Results: There was no statistically significant difference in bond strength values regarding the storage period of heparinized blood and the types of blood. Groups without contamination presented higher bond strengths than contaminated groups. The application mode of the cleansing agents had no influence on bond strength results. There was no statistically significant difference among cleansing agents and they were as effective as a water stream in counteracting the effect of blood contamination. Conclusion: Heparinized blood can be used as a contaminant for up to one week, and it is a reliable procedure to standardize the contaminant. The cleansing agents can be used without friction. A water stream is sufficient to remove blood contamination from dental tissues, before the application of a one-step adhesive system.
Resumo:
This study evaluated the influence of the dental substrates obtained after the use of different caries removal techniques on bonding of a self-etching system. Forty, extracted, carious, human molars were ground to expose flat surfaces containing caries-infected dentine surrounded by sound dentine. The caries lesions of the specimens were removed or not (control-G1) either by round steel burs and water-cooled, low speed, handpiece (G2), or by irradiation with an erbium, chromium:yttrium scandium gallium garnet (Er,Cr:YSGG) laser (2W, 20 Hz, 35.38 J/cm(2), fiber G4 handpiece with 0.2826 mm(2), non-contact mode at a 2 mm distance, 70% air/20% water-G3) or using a chemo-mechanical method (Carisolv-G4). Caries-infected, caries-affected and sound dentines were submitted to a bonding system followed by construction of a resin-based composite crown. Hour-glass shaped samples were obtained and submitted to a micro-tensile bond test. The bond strength data were compared by analysis of variance (ANOVA), complemented by Tukey`s test (P <= 0.05). The samples of sound dentine presented higher bond strengths than did samples of caries-affected dentine, except for the groups treated with the Er,Cr:YSGG laser. The highest bond strengths were observed with the sound dentine treated with burs and Carisolv. The bond strengths to caries-affected dentine were similar in all groups. Additionally, bonding to caries-affected dentine of the Er,Cr:YSGG laser and Carisolv groups was similar to bonding to caries-infected dentine. Thus, caries-affected dentine is not an adequate substrate for adhesion. Moreover, amongst the caries removal methods tested, the Er,Cr:YSGG laser irradiation was the poorest in providing a substrate for bonding with the tested self-etching system.