815 resultados para hydrogen-bonding


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three samples of the skarn mineral rustumite Ca10(Si2O7)2(SiO4)(OH)2Cl2, space group C2/c, a ≈7.6, b ≈ 18.5, c ≈ 15.5 Å, β ≈ 104°, with variable OH, Cl, F content were investigated by electron microprobe, single-crystal X-ray structure refinements, and Raman spectroscopy. “Rust1LCl” is a low chlorine rustumite Ca10(Si2O7)2(SiO4)(OH1.88F0.12)(Cl1.28,OH0.72) from skarns associated with the Rize batholith near Ikizedere, Turkey. “Rust2F” is a F-bearing rustumite Ca10(Si2O7)2(SiO4)(OH1.13F0.87) (Cl1 96OH0.04) from xenoliths in ignimbrites of the Upper Chegem Caldera, Northern Caucasus, Russia. “Rust3LClF” represents a low-Cl, F-bearing rustumite Ca10(Si2O7)2(SiO4)0.87(H4O4)0.13(OH1.01F0.99) (Cl1.00 OH1.00) from altered merwinite skarns of the Birkhin massif, Baikal Lake area, Eastern Siberia, Russia. Rustumite from Birkhin massif is characterized by a significant hydrogarnet-like or fluorine substitution at the apices of the orthosilicate group, leading to specific atomic displacements. The crystal structures including hydrogen positions have been refined from single-crystal X-ray data to R1 = 0.0205 (Rust1_LCl), R1 = 0.0295 (Rust2_F), and R1 = 0.0243 (Rust3_LCl_F), respectively. Depletion in Cl and replacement by OH is associated with smaller unit-cell dimensions. The substitution of OH by F leads to shorter hydrogen bonds O-H⋯F instead of O-H⋯OH. Raman spectra for all samples have been measured and confirm slight strengthening of the hydrogen bonds with uptake of F.This study discusses the complex crystal chemistry of the skarn mineral rustumite and may provide a wider understanding of the chemical reactions related to contact metamorphism of limestones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In haloarchaea, light-driven ion transporters have been modified by evolution to produce sensory receptors that relay light signals to transducer proteins controlling motility behavior. The proton pump bacteriorhodopsin and the phototaxis receptor sensory rhodopsin II (SRII) differ by 74% of their residues, with nearly all conserved residues within the photoreactive retinal-binding pocket in the membrane-embedded center of the proteins. Here, we show that three residues in bacteriorhodopsin replaced by the corresponding residues in SRII enable bacteriorhodopsin to efficiently relay the retinal photoisomerization signal to the SRII integral membrane transducer (HtrII) and induce robust phototaxis responses. A single replacement (Ala-215-Thr), bridging the retinal and the membrane-embedded surface, confers weak phototaxis signaling activity, and the additional two (surface substitutions Pro-200-Thr and Val-210-Tyr), expected to align bacteriorhodopsin and HtrII in similar juxtaposition as SRII and HtrII, greatly enhance the signaling. In SRII, the three residues form a chain of hydrogen bonds from the retinal's photoisomerized C(13)=C(14) double bond to residues in the membrane-embedded alpha-helices of HtrII. The results suggest a chemical mechanism for signaling that entails initial storage of energy of photoisomerization in SRII's hydrogen bond between Tyr-174, which is in contact with the retinal, and Thr-204, which borders residues on the SRII surface in contact with HtrII, followed by transfer of this chemical energy to drive structural transitions in the transducer helices. The results demonstrate that evolution accomplished an elegant but simple conversion: The essential differences between transport and signaling proteins in the rhodopsin family are far less than previously imagined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two crystalline donor-acceptor complexes showing hydrogen-bondings between bis(ethylenedithio) tetrathiofulvalene (BEDT-TTF) derivatives containing pyridine and pyrazine groups and 2,5-dichloro-3,6-dihydroxyl-1,4-benzoquinone (chloranilic acid) were prepared. X-ray structure analyses revealed that functional groups play an important role in constructing the unique crystal structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NMR investigations have been carried out of complexes between bovine chymotrypsin Aα and a series of four peptidyl trifluoromethyl ketones, listed here in order of increasing affinity for chymotrypsin: N-Acetyl-l-Phe-CF3, N-Acetyl-Gly-l-Phe-CF3, N-Acetyl-l-Val-l-Phe-CF3, and N-Acetyl-l-Leu-l-Phe-CF3. The D/H fractionation factors (φ) for the hydrogen in the H-bond between His 57 and Asp 102 (His 57-Hδ1) in these four complexes at 5°C were in the range φ = 0.32–0.43, expected for a low-barrier hydrogen bond. For this series of complexes, measurements also were made of the chemical shifts of His 57-Hɛ1 (δ2,2-dimethylsilapentane-5-sulfonic acid 8.97–9.18), the exchange rate of the His 57-Hδ1 proton with bulk water protons (284–12.4 s−1), and the activation enthalpies for this hydrogen exchange (14.7–19.4 kcal⋅mol−1). It was found that the previously noted correlations between the inhibition constants (Ki 170–1.2 μM) and the chemical shifts of His 57-Hδ1 (δ2,2-dimethylsilapentane-5-sulfonic acid 18.61–18.95) for this series of peptidyl trifluoromethyl ketones with chymotrypsin [Lin, J., Cassidy, C. S. & Frey, P. A. (1998) Biochemistry 37, 11940–11948] could be extended to include the fractionation factors, hydrogen exchange rates, and hydrogen exchange activation enthalpies. The results support the proposal of low barrier hydrogen bond-facilitated general base catalysis in the addition of Ser 195 to the peptidyl carbonyl group of substrates in the mechanism of chymotrypsin-catalyzed peptide hydrolysis. Trends in the enthalpies for hydrogen exchange and the fractionation factors are consistent with a strong, double-minimum or single-well potential hydrogen bond in the strongest complexes. The lifetimes of His 57-Hδ1, which is solvent shielded in these complexes, track the strength of the hydrogen bond. Because these lifetimes are orders of magnitude shorter than those of the complexes themselves, the enzyme must have a pathway for hydrogen exchange at this site that is independent of dissociation of the complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous molecular mechanics calculations suggest that strands of peptide nucleic acids (PNAs) and complementary oligonucleotides form antiparallel duplexes stabilized by interresidue hydrogen bonds. In the computed structures, the amide carbonyl oxygen nearest the nucleobase (O7') forms an interresidue hydrogen bond with the backbone amide proton of the following residue, (n + 1)H1'. Of the 10 published two dimensional 1H NMR structures of a hexameric PNA.RNA heteroduplex. PNA(GAACTC).r(GAGUUC), 9 exhibit two to five potential interresidue hydrogen bonds. In our minimized average structure, created from the coordinates of these 10 NMR structures, three of the five possible interresidue hydrogen bond sites within the PNA backbone display the carbonyl oxygen (O7') and the amide proton (n + 1)H1' distances and N1'-H1'-(n - 1)O7' angles optimal for hydrogen bond formation. The finding of these interresidue hydrogen bonds supports the results of our previous molecular mechanics calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of DNA polymerases (pols) to catalyze the template-directed synthesis of duplex oligonucleotides containing a nonstandard Watson-Crick base pair between a nucleotide bearing a 5-(2,4-diaminopyrimidine) heterocycle (d kappa) and a nucleotide bearing either deoxyxanthosine (dX) or N1-methyloxoformycin B (pi) has been investigated. The kappa-X and kappa-pi base pairs are jointed by a hydrogen bonding pattern different from and exclusive of those joining the AT and GC base pairs. Reverse transcriptase from human immunodeficiency virus type 1 (HIV-1) incorporates dXTP into an oligonucleotide opposite d kappa in a template with good fidelity. With lower efficiency and fidelity, HIV-1 reverse transcriptase also incorporates d kappa TP opposite dX in the template. With d pi in the template, no incorporation of d kappa TP was observed with HIV reverse transcriptase. The Klenow fragment of DNA pol I from Escherichia coli does not incorporate d kappa TP opposite dX in a template but does incorporate dXTP opposite d kappa. Bovine DNA pols alpha, beta, and epsilon accept neither dXTP opposite d kappa nor d kappa TP opposite d pi. DNA pols alpha and epsilon (but not beta) incorporate d kappa TP opposite dX in a template but discontinue elongation after incorporating a single additional base. These results are discussed in light of the crystal structure for pol beta and general considerations of how polymerases must interact with an incoming base pair to faithfully copy genetic information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used self-assembled purines and pyrimidines on planar gold surfaces and on gold-coated atomic force microscope (AFM) tips to directly probe intermolecular hydrogen bonds. Electron spectroscopy for chemical analysis (ESCA) and thermal programmed desorption (TPD) measurements of the molecular layers suggested monolayer coverage and a desorption energy of about 25 kcal/mol. Experiments were performed under water, with all four DNA bases immobilized on AFM tips and flat surfaces. Directional hydrogen-bonding interaction between the tip molecules and the surface molecules could be measured only when opposite base-pair coatings were used. The directional interactions were inhibited by excess nucleotide base in solution. Nondirectional van der Waals forces were present in all other cases. Forces as low as two interacting base pairs have been measured. With coated AFM tips, surface chemistry-sensitive recognition atomic force microscopy can be performed.