843 resultados para hot pressing


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stoichiometric CrSi2 was prepared by arc melting and compacted by uniaxial hot pressing for property measurements. The crystal structure of CrSi2 was investigated using the powder x-ray diffraction method. From the Rietveld refinement, the lattice parameters were found to be a = 4.427 57 (7) and c = 6.368 04 (11) Å, respectively. The thermal expansion measurement revealed an anisotropic expansion in the temperature range from room temperature 800 K with αa = 14.58×10−6/K, αc = 7.51×10−6/K, and αV = 12.05×10−6/K. The volumetric thermal expansion coefficient shows an anomalous decrease in the temperature range of 450–600 K. The measured electrical resistivity ρ and thermoelectric power S have similar trends with a maxima around 550 K. Thermal conductivity measurements show a monotonic decrease with increasing temperature from a room temperature value of 10 W m−1 K−1. The ZT values increase with temperature and have a maximum value of 0.18 in the temperature range studied. An analysis of the electronic band structure is provided.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Densification characteristics of amorphous ZrO2-40 mol% Al2O3 powder with 3 to 15 mu m nominal particle size range, produced by spray pyrolysis, have been studied by conducting hot pressing experiments at 573, 723 and 873 K with uniaxial pressures of 250, 500 and 750 MPa. Most of the increase in relative density from the starting value of similar to 40% occurred during loading up to the desired pressure. The increments in density during 1 hour constant pressure dwells were less than 4% at all temperatures and pressure. Inter-particle bonding was not observed at 573 K. Correlation between the results with a viscous sintering model for hot pressing is not satisfactory for describing the behavior as normal viscous sintering.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ingots with compositions CrSi2-x (with 0 < x < 0.1) were synthesized by vacuum arc melting followed by uniaxial hot pressing for densification. This paper reports the temperature and composition dependence of the electrical resistivity, Seebeck coefficient, and thermal conductivity of CrSi2-x samples in the temperature range of 300 K to 800 K. The silicon-deficient samples exhibited substantial reductions in resistivity and Seebeck coefficient over the measured temperature range due to the formation of metallic secondary CrSi phase embedded in the CrSi2 matrix phase. The thermal conductivity was seen to exhibit a U-shaped curve with respect to x, exhibiting a minimum value at the composition of x = 0.04. However, the limit of the homogeneity range of CrSi2 suppresses any further decrease of the lattice thermal conductivity. As a consequence, the maximum figure of merit of ZT = 0.1 is obtained at 650 K for CrSi1.98.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CrSi and Cr1-x Fe (x) Si particles embedded in a CrSi2 matrix have been prepared by hot pressing from CrSi1.9, CrSi2, and CrSi2.1 powders produced by ball milling using either WC or stainless steel milling media. The samples were characterized by powder X-ray diffraction, scanning, and transmission electron microscopy and electron microprobe analysis. The final crystallite size of CrSi2 obtained from the XRD patterns is about 40 and 80 nm for SS- and WC-milled powders, respectively, whereas the size of the second phase inclusions in the hot pressed samples is about 1-5 mu m. The temperature dependence of the electrical resistivity, Seebeck coefficient, thermal conductivity, and figure of merit (ZT) were analyzed in the temperature range from 300 to 800 K. While the ball-milling process results in a lower electrical resistivity and thermal conductivity due to the presence of the inclusions and the refinement of the matrix microstructure, respectively, the Seebeck coefficient is negatively affected by the formation of the inclusions which leads to a modest improvement of ZT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly(methyl methacrylate) (PMMA) and CaCu3Ti4O12 (CCTO) composites were fabricated via melt mixing followed by hot pressing technique. These were characterized using X-ray diffraction, thermo gravimetric, thermo mechanical, differential scanning calorimetry, fourier transform infrared (FTIR) and Impedance analyser for their structural, thermal and dielectric properties. Composites were found to have better thermal stability than that of pure PMMA. However, there was no significant difference in the glass transition (T (g) ) temperature between the polymer and the composite. The appearance of additional vibrational frequencies in the range 400-600 cm(-1) in FTIR spectra indicated a possible interaction between PMMA and CCTO. The composite, with 38 vol% of CCTO (in PMMA), exhibited remarkably low dielectric loss at high frequencies and the low-frequency relaxation is attributed to the interfacial polarization/MWS effect. The origin of AC conductivity particularly in the high-frequency region was attributed to the electronic polarization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Composites comprising Poly(Methyl Methacrylate) (PMMA) and CaCu3Ti4O12 (CCTO) via melt mixing followed by hot pressing were fabricated. These were characterized using X-ray diffraction, thermo gravimetric, scanning electron microscopy, and Impedance analyzer for their structural, morphology, and dielectric properties. Composites were found to have better thermal stability than that of pure PMMA. The composite, with 38 Vol % of CCTO (in PMMA), exhibited remarkably low dielectric loss at high frequencies and the low frequency relaxation is attributed to the space charge polarization/MWS effect. Theoretical models were employed to rationalize the dielectric behavior of these composites. At higher temperatures, the relaxation peak shifts to higher frequencies, due to the merging of both beta and alpha relaxations into a single dielectric dispersion peak. The AC conductivity in the high frequency region was attributed to the electronic polarization. POLYM. ENG. SCI., 54:551-558, 2014. (c) 2013 Society of Plastics Engineers

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermoelectric (TE) conversion of waste heat into useful electricity demands optimized thermal and electrical transport in the leg material over a wide temperature range. In order to gain a reasonably high figure of merit (ZT) as well as high thermal electric conversion efficiency, various conditions of the starting material were studied: industrially produced skutterudite powders of p-type DDy(Fe1-xCox)(4)Sb-12 (DD: didymium) and n-type (Mm, Sm)(y)Co4Sb12 (Mm: mischmetal) were used. After a rather fast reaction-melting technique, the bulk was crushed and sieved with various strainers in order to obtain particles below the respective mesh sizes, followed by ball-milling under three different conditions. The dependence of the TE properties (after hot pressing) on the micro/nanosized particles, grains and crystallites was investigated. Optimized conditions resulted in an increase of ZT for bulk material to current record-high values: from ZT similar to 1.1 to ZT similar to 1.3 at 775 K for p-type and from ZT similar to 1.0 to ZT similar to 1.6 at 800 K for n-type, resulting in respective efficiencies (300-850 K) of eta > 13% and eta similar to 16%. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cu2Ge1-xInxSe3 (x = 0, 0.05, 0.1, 0.15) compounds were prepared by a solid state synthesis. The powder X-ray diffraction pattern of the undoped sample revealed an orthorhombic phase. The increase in doping content led to the appearance of additional peaks related to cubic and tetragonal phases along with the orthorhombic phase. This may be due to the substitutional disorder created by Indium doping. Scanning Electron Microscopy micrographs showed a continuous large grain growth with low porosity, which confirms the compaction of the samples after hot pressing. Elemental composition was measured by Electron Probe Micro Analyzer and confirmed that all the samples are in the stoichiometric ratio. The electrical resistivity (rho) systematically decreased with an increase in doping content, but increased with the temperature indicating a heavily doped semiconductor behavior. A positive Seebeck coefficient (S) of all samples in the entire temperature range reveal holes as predominant charge carriers. Positive Hall coefficient data for the compounds Cu2InxGe1-xSe3 (x = 0, 0.1) at room temperature (RT) confirm the sign of Seebeck coefficient. The trend of rho as a function of doping content for the samples Cu2InxGe1-xSe3 with x = 0 and 0.1 agrees with the measured charge carrier density calculated from Hall data. The total thermal conductivity increased with rising doping content, attributed to an increase in carrier thermal conductivity. The thermal conductivity revealed 1/T dependence, which indicates the dominance of Umklapp phonon scattering at elevated temperatures. The maximum thermoelectric figure of merit (ZT) = 0.23 at 723 K was obtained for Cu2In0.1Ge0.9Se3. (C)2014 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fe0.05Co0.95Sb2.875Te0.125, a double-element-substituted skutterudite, was prepared by induction melting, annealing, and hot pressing (HP). The hot-pressed sample was subjected to high-pressure torsion (HPT) with 4 GPa pressure at 673 K. X-ray diffraction was performed before and after HPT processing of the sample; the skutterudite phase was observed as a main phase, but an additional impurity phase (CoSb2) was observed in the HPT-processed sample. Surface morphology was determined by high-resolution scanning electron microscopy. In the HP sample, coarse grains with sizes in the range of approximately 100 nm to 300 nm were obtained. They changed to fine grains with a reduction in grain size to 75 nm to 125 nm after HPT due to severe plastic deformation. Crystallographic texture, as measured by x-ray diffraction, indicated strengthening of (112), (102) poles and weakening of the (123) pole of the HPT-processed sample. Raman-active vibrational modes showed a peak position shift towards the lower energy side, indicating softening of the modes after HPT. The distortion of the rectangular Sb-Sb rings leads to broadening of Sb-Sb vibrational modes due to local strain fluctuation. In the HPT process, a significant effect on the shorter Sb-Sb bond was observed as compared with the longer Sb-Sb bond.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work reports the impact of sintering conditions on the phase stability in hydroxyapatite (HA) magnetite (Fe3O4) bulk composites, which were densified using either pressureless sintering in air or by rapid densification via hot pressing in inert atmosphere. In particular, the phase abundances, structural and magnetic properties of the (1-x)HA-xFe(3)O(4) (x = 5, 10, 20, and 40 wt %) composites were quantified by corroborating results obtained from Rietveld refinement of the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mossbauer spectroscopy. Post heat treatment phase analysis revealed a major retention of Fe3O4 in argon atmosphere, while it was partially/completely oxidized to hematite (alpha-Fe2O3) in air. Mossbauer results suggest the high-temperature diffusion of Fe3+ into hydroxyapatite lattice, leading to the formation of Fe-doped HA. A preferential occupancy of Fe3+ at the Ca(1) and Ca(2) sites under hot-pressing and conventional sintering conditions, respectively, was observed. The lattice expansion in HA from Rietveld analysis correlated well with the amounts of Fe-doped HA determined from the Mossbauer spectra. Furthermore, hydroxyapatite in the monoliths and composites was delineated to exist in the monoclinic (P2(1)/b) structure as against the widely reported hexagonal (P6(3)/m) crystal lattice. The compositional similarity of iron doping in hydroxyapatite to that of tooth enamel and bone presents HA-Fe3O4 composites as potential orthopedic and dental implant materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various NixCo1-x alloys (with x varying from 0-60 wt%, Ni: nickel, Co: cobalt) were prepared by vacuum arc melting and mixed with polyvinylidene fluoride (PVDF) to design lightweight, flexible and corrosion resistant materials that can attenuate electromagnetic radiation. The saturation magnetization scaled with the fraction of Co in the alloy. Two key properties such as high-magnetic permeability and high-electrical conductivity were targeted. While the former was achieved using a Ni-Co alloy, multiwalled carbon nanotubes (CNTs) in the composites accomplished the latter. A unique approach was adopted to prepare the composites wherein PVDF powder along with CNTs and Ni-Co flakes were made into a paste, using a solvent, followed by hot pressing. Interestingly, CNTs facilitated in uniform dispersion of the Ni-Co alloy in PVDF, as manifested from synergistic improvement in the electrical conductivity. A significant improvement in the shielding effectiveness (41 dB, >99.99% attenuation) was achieved with the addition of 50 wt% of Ni40Co60 alloy and 3 wt% CNTs. Intriguingly, due to the unique processing technique adopted here, the flexibility of the composites was retained and more interestingly, the composites were resistant to corrosion as compared to only Ni-Co alloy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermoelectric properties of semiconducting beta-FeSi2 containing a homogeneous distribution of Si secondary phase have been studied. The synthesis was carried out using arc melting followed by the densification by uniaxial hot pressing. Endogenous beta-FeSi2/Si composites were produced by the eutectoid decomposition of high-temperature alpha-Fe2Si5 phase. The aging heat treatments have been carried out at various temperatures below the equilibrium eutectoid temperature for various durations in order to tune the size of the eutectoid product. Thermal properties of the samples were studied in the temperature range of 100-350 A degrees C. The microstructural investigations support the fact that the finest microstructure generated through the eutectoid decomposition of the alpha-Fe2Si5 metastable phase is responsible of the phonon scattering. The results suggest an opportunity to produce bulk iron silicide alloys with reduced thermal conductivity in order to enhance its thermoelectric performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hot pressing (HP) at higher sintering temperature has been a traditional and prevalent technique for the fabrication of alpha-SiAlON. In order to prepare translucent SiAlON more easily, LiF was used as a non-oxide sintering additive to lower the sintering temperature to <= 1650 degrees C. As a result, all of the samples possessed a good hardness and fracture toughness. At the same time, the lower temperature sintered samples showed a higher optical transmittance in the range of 2.5-5.5 mu m wavelength (0.5 mm in thickness). The maximum infrared transmission reached 68% at a wavelength of 3.3 mu m. The present work shows that the sintering process has a strong effect on microstructure and property of alpha-SiAlON. To be exact, a lower sintering temperature and longer holding time can produce some fully-developed microstrcture, which is beneficial for the optical transmittance. (C) 2008 The Ceramic Society of Japan. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A modernidade exige materiais versáteis, resistentes e, durante um longo tempo os plásticos serviram a esse propósito. Entretanto, o acúmulo desses materiais ao serem descartados no meio ambiente tornou-se um problema Os polímeros biodegradáveis surgiram neste cenário como alternativa para evitar o acúmulo de resíduos plásticos no meio ambiente. O polihidroxibutirato (PHB) representa uma classe de polímeros biodegradáveis, mas que apresenta um alto custo e possui ainda propriedades térmicas limitadas. A borracha natural possui excelentes propriedades mecânicas, resistência ao envelhecimento, flexibilidade e apresenta melhor custo benefício se comparada com as borrachas sintéticas. Neste estudo, foram elaboradas misturas poliméricas de polihidroxibutirato (PHB) e látex de borracha natural em diferentes concentrações, por prensagem à quente. Os ensaios de calorimetria diferencial de varredura (DSC), análise termogravimétrica (TGA), espectrometria na região do infravermelho (FTIR), microscopia ótica (MO) e microscopia eletrônica de varredura (MEV) foram utilizados para caracterizar e avaliar as propriedades das misturas poliméricas. O PHB e as misturas com borracha natural foram submetidos ao ensaio de biodegradabilidade através do enterro em solo simulado, conforme a norma ASTM G 160-03, variando por um período de 2 a 17 semanas. Ao final de cada período foram determinadas a perda de massa, a morfologia dos corpos de prova e foram realizadas as análises de DSC, TGA e FTIR. As misturas poliméricas apresentaram menor resistência térmica do que o PHB. No ensaio de biodegradabilidade, as misturas foram consideradas biodegradáveis, segundo a norma ASTM G 160-03 e tiveram a porcentagem de cristalinidade reduzida, tendo o teor de borracha natural contribuído para aumentar a taxa de biodegradação. As análises por MEV comprovaram a existência de consórcios de microrganismos, responsáveis pela biodegradação do PHB e das misturas poliméricas

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bulk novel cemented carbides (W1-xAlx)C-10.1 vol% Co (x = 0.2, 0.33, 0.4, 0.5) are prepared by mechanical alloying and hot-pressing sintering. Hot-pressing (HP) is used to fabricate the bulk bodies of the hard alloys. The novel cemented carbides have good mechanical properties compared with WC-Co. The density and operating cost of the novel material is much lower than a WC-Co system. The material is easy to process and the processing leads to nano-scaled, rounded, particles in the bulk material. The hardness of (W1-xAlx)C-10.1 vol% Co (x = 0.2, 0.33, 0.4, 0.5) hard material is 20.37, 21.16, 21.59 and 22.16 GPa, and the bending strength is 1257, 1238, 1211 and 1293 MPa, with the aluminum content varying from 20% to 50%. The relationship between the microstructure and the mechanical properties of the novel hard alloy is also discussed.