173 resultados para homeobox
Resumo:
The semidominant mutation Liguleless3-O (Lg3-O) causes a blade-to-sheath transformation at the midrib region of the maize (Zea mays L.) leaf. We isolated a full-length lg3 cDNA containing a knotted1-like family homeobox. Six Lg3-O partial revertant alleles caused by insertion of a Mutator (Mu) transposon and two deletion derivatives were isolated and used to verify that our knotted1-like cDNA corresponds to the LG3 message. In wild-type plants the LG3 mRNA is expressed in apical regions but is not expressed in leaves. In mutant plants harboring any of three dominant lg3 alleles (Lg3-O, -Mlg, and -347), LG3 mRNA is expressed in leaf sheath tissue, indicating that the Lg3 phenotype is due to ectopic expression of the gene. The Lg3-O revertant alleles represent two classes of Lg3 phenotypes that correlate well with the level of ectopic Lg3 expression. High levels of ectopic LG3 mRNA expression results in a severe Lg3 phenotype, whereas weak ectopic Lg3 expression results in a mild Lg3 phenotype. We propose that ectopic Lg3 expression early in leaf development causes the blade-to-sheath transformation, but the level of expression determines the extent of the transformation.
Resumo:
Vsx-1 is a paired-like:CVC homeobox gene whose expression is linked to bipolar cell differentiation during zebrafish retinogenesis. We used a yeast two-hybrid screen to identify proteins interacting with Vsx-1 and isolated Ubc9, an enzyme that conjugates the small ubiquitin-like modifier SUMO-1. Despite its interaction with Ubc9, we show that Vsx-1 is not a substrate for SUMO-1 in COS-7 cells or in vitro. When a yeast two-hybrid assay is used, deletion analysis of the interacting domain on Vsx-1 shows that Ubc9 binds to a nuclear localization signal (NLS) at the NH2 terminus of the homeodomain. In SW13 cells, Vsx-1 localizes to the nucleus and is excluded from nucleoli. Deletion of the NLS disrupts this nuclear localization, resulting in a diffuse cytoplasmic distribution of Vsx-1. In SW13 AK1 cells that express low levels of endogenous Ubc9, Vsx-1 accumulates in a perinuclear ring and colocalizes with an endoplasmic reticulum marker. However, NLS-tagged STAT1 protein exhibits normal nuclear localization in both SW13 and SW13 AK1 cells, suggesting that nuclear import is not globally disrupted. Cotransfection of Vsx-1 with Ubc9 restores Vsx-1 nuclear localization in SW3 AK1 cells and demonstrates that Ubc9 is required for the nuclear localization of Vsx-1. Ubc9 continues to restore nuclear localization even after a C93S active site mutation has eliminated its SUMO-1-conjugating ability. These results suggest that Ubc9 mediates the nuclear localization of Vsx-1, and possibly other proteins, through a nonenzymatic mechanism that is independent of SUMO-1 conjugation.
Overexpression of a Homeobox Gene, LeT6, Reveals Indeterminate Features in the Tomato Compound Leaf1
Resumo:
The cultivated tomato (Lycopersicon esculentum) has a unipinnate compound leaf. In the developing leaf primordium, major leaflet initiation is basipetal, and lobe formation and early vascular differentiation are acropetal. We show that engineered alterations in the expression of a tomato homeobox gene, LeT6, can cause dramatic changes in leaf morphology. The morphological states are variable and unstable and the phenotypes produced indicate that the tomato leaf has an inherent level of indeterminacy. This is manifested by the production of multiple orders of compounding in the leaf, by numerous shoot, inflorescence, and floral meristems on leaves, and by the conversion of rachis-petiolule junctions into “axillary” positions where floral buds can arise. Overexpression of a heterologous homeobox transgene, kn1, does not produce such phenotypic variability. This indicates that LeT6 may differ from the heterologous kn1 gene in the effects manifested on overexpression, and that 35S-LeT6 plants may be subject to alterations in expression of both the introduced and endogenous LeT6 genes. The expression patterns of LeT6 argue in favor of a fundamental role for LeT6 in morphogenesis of leaves in tomato and also suggest that variability in homeobox gene expression may account for some of the diversity in leaf form seen in nature.
Alteration of Hormone Levels in Transgenic Tobacco Plants Overexpressing the Rice Homeobox Gene OSH1
Resumo:
The rice (Oryza sativa L.) homeobox gene OSH1 causes morphological alterations when ectopically expressed in transgenic rice, Arabidopsis thaliana, and tobacco (Nicotiana tabacum L.) and is therefore believed to function as a morphological regulator gene. To determine the relationship between OSH1 expression and morphological alterations, we analyzed the changes in hormone levels in transgenic tobacco plants exhibiting abnormal morphology. Levels of the plant hormones indole-3-acetic acid, abscisic acid, gibberellin (GA), and cytokinin (zeatin and trans-zeatin [Z]) were measured in leaves of OSH1-transformed and wild-type tobacco. Altered plant morphology was found to correlate with changes in hormone levels. The more severe the alteration in phenotype of transgenic tobacco, the greater were the changes in endogenous hormone levels. Overall, GA1 and GA4 levels decreased and abscisic acid levels increased compared with wild-type plants. Moreover, in the transformants, Z (active form of cytokinin) levels were higher and the ratio of Z to Z riboside (inactive form) also increased. When GA3 was supplied to the shoot apex of transformants, internode extension was restored and normal leaf morphology was also partially restored. However, such GA3-treated plants still exhibited some morphological abnormalities compared with wild-type plants. Based on these data, we propose the hypothesis that OSH1 affects plant hormone metabolism either directly or indirectly and thereby causes changes in plant development.
Resumo:
In zebrafish, the organizer is thought to consist of two regions, the yolk syncytial layer (YSL) and the shield. The dorsal YSL appears to send signals that affect formation of the shield in the overlying mesendoderm. We show here that a domain of dorsal deep cells located between the YSL and the shield is marked by expression of the iro3 gene. As gastrulation proceeds, the iro3 positive domain involutes and migrates to the animal pole. Iro3 expression is regulated by Nodal and bone morphogenic protein antagonists. Overexpression of iro3 induced ectopic expression of shield-specific genes. This effect was mimicked by an Iro3-Engrailed transcriptional repressor domain fusion, whereas an Iro3-VP16 activator domain fusion behaved as a dominant negative or antimorphic form. These results suggest that Iro3 acts as a transcriptional repressor and further implicate the iro3 gene in regulating organizer formation. We propose that the iro3-expressing dorsal deep cells represent a distinct organizer domain that receives signals from the YSL and in turn sends signals to the forming shield, thereby influencing its expansion and differentiation.
Resumo:
Four novel murine homeobox genes, Uncx-4.1, OG-2, OG-9, and OG-12, were cloned and partially sequenced. The amino acid sequence of the mouse Uncx-4.1 homeodomain is closely related to the sequence of the unc-4 homeodomain of Caenorhabditis elegans. However, the OG-2, OG-9, and OG-12 homeodomains are relatively diverged and are not closely related to any previously described homeodomain. Northern blot analyses revealed multiple bands of Uncx-4.1, OG-2, OG-9, and OG-12 poly(A)+ RNA in RNA from mouse embryos and adults that change during development and showed that each gene is expressed in a tissue-specific manner. OG-12 cDNAs were cloned that correspond to two alternatively spliced species of OG-12 mRNA. Three major bands of Uncx-4.1 poly(A)+ RNA were found only in RNA from adult mouse brain, but an additional band was observed in RNA from all of the other tissues tested. Major bands of OG-9 and OG-2 poly(A)+ RNA were found only in RNA from striated muscle; however, trace bands were detected in RNA from other tissues.
Resumo:
Murine Hoxd-3 (Hox 4.1) genomic DNA and cDNA and Hoxa-3 (Hox 1.5) cDNA were cloned and sequenced. The homeodomains of Hoxd-3 and Hoxa-3 and regions before and after the homeodomain are highly conserved. Both Hoxa-3 and Hoxa-3 proteins have a proline-rich region that contains consensus amino acid sequences for binding to Src homology 3 domains of some signal transduction proteins. Northern blot analysis of RNA from 8- to 11-day-old mouse embryos revealed a 4.3-kb species of Hoxd-3 RNA, whereas a less abundant 3.0-kb species of Hoxd-3 RNA was found in RNA from 9- to 11-day-old embryos. Two species of Hoxd-3 poly(A)+ RNA, 4.3 and 6.0 kb in length, were found in poly(A)+ RNA from adult mouse kidney, but not in RNA from other adult tissues tested. Hoxd-3 mRNA was detected by in situ hybridization in 12-, 14-, and 17-day-old mouse embryos in the posterior half of the myelencephalon, spinal cord, dorsal root ganglia, first cervical vertebra, thyroid gland, kidney tubules, esophagus, stomach, and intestines.
Resumo:
Homeobox genes encode a large family of homeodomain proteins that play a key role in the pattern formation of animal embryos. By analogy, homeobox genes in plants are thought to mediate important processes in their embryogenesis, but there is very little evidence to support this notion. Here we described the temporal and spatial expression patterns of a rice homeobox gene, OSH1, during rice embryogenesis. In situ hybridization analysis revealed that in the wild-type embryo, OSH1 was first expressed at the globular stage, much earlier than organogenesis started, in a ventral region where shoot apical meristem and epiblast would later develop. This localized expression of OSH1 indicates that the cellular differentiation has already occurred at this stage. At later stages after organogenesis had initiated, OSH1 expression was observed in shoot apical meristem [except in the L1 (tunica) layer], epiblast, radicle, and their intervening tissues in descending strength of expression level with embryonic maturation. We also performed in situ hybridization analysis with a rice organless embryo mutant, orl1, that develops no embryonic organs. In the orl1 embryo, the expression pattern of OSH1 was the same as that in the wild-type embryo in spite of the lack of embryonic organs. This shows that OSH1 is not directly associated with organ differentiation, but may be related to a regulatory process before or independent of the organ determination. The results described here strongly suggest that, like animal homeobox genes, OSH1 plays an important role in regionalization of cell identity during early embryogenesis.
Resumo:
The formation of ventral mesoderm has been traditionally viewed as a result of a lack of dorsal signaling and therefore assumed to be a default state of mesodermal development. The discovery that bone morphogenetic protein 4 (BMP4) can induce ventral mesoderm led to the suggestion that the induction of the ventral mesoderm requires a different signaling pathway than the induction of the dorsal mesoderm. However, the individual components of this pathway remained largely unknown. Here we report the identification of a novel Xenopus homeobox gene PV.1 (posterior-ventral 1) that is capable of mediating induction of ventral mesoderm. This gene is activated in blastula stage Xenopus embryos, its expression peaks during gastrulation and declines rapidly after neurulation is complete. PV.1 is expressed in the ventral marginal zone of blastulae and later in the posterior ventral area of gastrulae and neurulae. PV.1 is inducible in uncommited ectoderm by the ventralizing growth factor BMP4 and counteracts the dorsalizing effects of the dominant negative BMP4 receptor. Overexpression of PV.1 yields ventralized tadpoles and rescues embryos partially dorsalized by LiCl treatment. In animal caps, PV.1 ventralizes induction by activin and inhibits expression of dorsal specific genes. All of these effects mimic those previously reported for BMP4. These observations suggest that PV.1 is a critical component in the formation of ventral mesoderm and possibly mediates the effects of BMP4.
Resumo:
We present evidence that a novel phytochrome (other than phytochromes A and B, PHYA and PHYB) operative in green plants regulates the "twilight-inducible" expression of a plant homeobox gene (Athb-2). Light regulation of the Athb-2 gene is unique in that it is not induced by red (R)-rich daylight or by the light-dark transition but is instead induced by changes in the ratio of R to far-red (FR) light. These changes, which normally occur at dawn and dusk (end-of-day FR), also occur during the daytime under the canopy (shade avoidance). By using pure light sources and phyA/phyB null mutants, we demonstrated that the induction of Athb-2 by changes in the R/FR ratio is mediated for the most part by a novel phytochrome operative in green plants. Furthermore, PHYB plays a negative role in repressing the accumulation of Athb-2 mRNA in the dark and a minor role in the FR response. The strict correlation of Athb-2 expression with FR-induced growth phenomena suggests a role for the Athb-2 gene in mediating cell elongation. This interpretation is supported by the finding that the Athb-2 gene is expressed at high levels in rapidly elongating etiolated seedlings. Furthermore, as either R or FR light inhibits cell elongation in etiolated tissues, they also down-regulate the expression of Athb-2 mRNA. Thus, these data support the notion that changes in light quality perceived by a novel phytochrome regulate plant development through the action of the Athb-2 homeobox gene.
Resumo:
Smooth muscle cell plasticity is considered a prerequisite for atherosclerosis and restenosis following angioplasty and bypass surgery. Identification of transcription factors that specify one smooth muscle cell phenotype over another therefore may be of major importance in understanding the molecular basis of these vascular disorders. Homeobox genes exemplify one class of transcription factors that could govern smooth muscle cell phenotypic diversity. Accordingly, we screened adult and fetal human smooth muscle cell cDNA libraries with a degenerate oligonucleotide corresponding to a highly conserved region of the homeodomain with the idea that homeobox genes, if present, would display a smooth muscle cell phenotype-dependent pattern of expression. No homeobox genes were detected in the adult human smooth muscle cell library; however, five nonparalogous homeobox genes were uncovered from the fetal library (HoxA5, HoxA11, HoxB1, HoxB7, and HoxC9). Northern blotting of adult and fetal tissues revealed low and restricted expression of all five homeobox genes. No significant differences in transcripts of HoxA5, HoxA11, and HoxB1 were detected between adult or fetal human smooth muscle cells in culture. HoxB7 and HoxC9, however, showed preferential mRNA expression in fetal human smooth muscle cells that appeared to correlate with the age of the donor. This phenotype-dependent expression of homeobox genes was also noted in rat pup versus adult smooth muscle cells. While similar differences in gene expression have been reported between subsets of smooth muscle cells from rat vessels of different-aged animals or clones of rat smooth muscle, our findings represent a demonstration of a transcription factor distinguishing two human smooth muscle cell phenotypes.
Resumo:
In the sea urchin embryo, the lineage founder cells whose polyclonal progenies will give rise to five different territories are segregated at the sixth division. To investigate the mechanisms by which the fates of embryonic cells are first established, we looked for temporal and spatial expression of homeobox genes in the very early cleavage embryos. We report evidence that PlHbox12, a paired homeobox-containing gene, is expressed in the embryo from the 4-cell stage. The abundance of the transcripts reaches its maximum when the embryo has been divided into the five polyclonal territories--namely at the 64-cell stage--and it abruptly declines at later stages of development. Blastomere dissociation experiments indicate that maximal expression of PlHbox12 is dependent on intercellular interactions, thus suggesting that signal transduction mechanisms are responsible for its transcriptional activation in the early cleavage embryo. Spatial expression of PlHbox12 was determined by whole-mount in situ hybridization. PlHbox12 transcripts in embryos at the fourth, fifth, and sixth divisions seem to be restricted to the conditionally specified ectodermal lineages. These results suggest a possible role of the PlHbox12 gene in the early events of cell specification of the presumptive ectodermal territories.
Resumo:
The homeotic gene complex (HOM-C) is a cluster of genes involved in the anteroposterior axial patterning of animal embryos. It is composed of homeobox genes belonging to the Hox/HOM superclass. Originally discovered in Drosophila, Hox/HOM genes have been identified in organisms as distantly related as arthropods, vertebrates, nematodes, and cnidarians. Data obtained in parallel from the organization of the complex, the domains of gene expression during embryogenesis, and phylogenetic relationships allow the subdivision of the Hox/HOM superclass into five classes (lab, pb/Hox3, Dfd, Antp, and Abd-B) that appeared early during metazoan evolution. We describe a search for homologues of these genes in platyhelminths, triploblast metazoans emerging as an outgroup to the great coelomate ensemble. A degenerate PCR screening for Hox/HOM homeoboxes in three species of triclad planarians has revealed 10 types of Antennapedia-like genes. The homeobox-containing sequences of these PCR fragments allowed the amplification of the homeobox-coding exons for five of these genes in the species Polycelis nigra. A phylogenetic analysis shows that two genes are clear orthologues of Drosophila labial, four others are members of a Dfd/Antp superclass, and a seventh gene, although more difficult to classify with certainty, may be related to the pb/Hox3 class. Together with previously identified Hox/HOM genes in other flatworms, our analyses demonstrate the existence of an elaborate family of Hox/HOM genes in the ancestor of all triploblast animals.
Resumo:
The molecular mechanisms that regulate the transcription of key developmental genes involved in shoot organogenesis have yet to be fully elucidated. However, it is clear that plant growth regulators, such as cytokinin, play a critical role in the differentiation of adventitious shoots. In Nicotiana tabacum zz100 leaf discs, high frequency shoot formation could be induced with 5 muM of the cytokinin N-6-benzyladenine (BA). Increasing the exogenous BA concentration to greater than 20 muM resulted in stunted explants with abnormal shoot morphology and altered mineral composition. Explants with abnormal shoots did not appear to be hyperhydric. Abnormalities were, however, associated with an increase in the expression of a knotted1-type homeobox gene (TobH1) isolated from normal shoot-forming cultures. The results suggest that the development of cytokinin-induced abnormal shoot morphology possibly involves changes in TobH1 gene expression.