985 resultados para high-resolution continuum source flame atomic spectrometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes instrumental strategies for the determination of Mn in a wide range concentration by high-resolution continuum source flame atomic absorption spectrometry technique (HR-CS F AAS) by means of different atomic lines (primary at 279.482 nm, secondary at 403.075 nm and alternative at 209.250 nm). These lines provided complementary concentration intervals, and large sample dilutions became unnecessary. The proposed method was applied to tap water, metal alloy certified material and foliar fertilizer. Accuracy for secondary line were evaluated by tests of significance (t Student test) with reference materials from the Institute of Technological Research of São Paulo, and the results were in agreement at the 95% confidence level. For primary and alternative lines, recovery is were in the 84-116% range and the RSD were 6.1% for all wavelengths. Analytical curves in the 0.1 - 2.0 mg L-1 (279.482 nm), 2.0 - 25 mg L-1 (403.075 nm), 25 - 500 mg L-1 (209.250 nm) intervals were obtained with linear correlation coefficient better than 0.9991. The detection limits were 3.3x10-3 mg L-1 (279.482 nm), 7.4 x 10-3 mg L-1 (403.075 nm), 3.9 mg L- 1 (209.250 nm). The found Mn concentrations were < 3.3x10-3 mg L-1 (tap water), 1.00 ± 0.04 (% m/m) (alloy IPT 25), 7235 ± 175 mg L-1 (foliar fertilizer 1), 4990 ± 132 mg L-1 (foliar fertilizer 2). A method was developed to detect interference of Fe in the Mn primary line (279.482 nm) using the ratio of absorbances of other lines of the triplet (279.827 nm and 280,108 nm).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper reports the amount and estimated daily mineral intake of nine elements (Ca, Mg, K, Na, P, Fe, Mn, Cr and Ni) in commercial instant coffees and coffee substitutes (n = 49). Elements were quantified by high-resolution continuum source flame (HR-CS-FAAS) and graphite furnace (HR-CS-GFAAS) atomic absorption spectrometry, while phosphorous was evaluated by a standard vanadomolybdophosphoric acid colorimetric method. Instant coffees and coffee substitutes are rich in K, Mg and P (>100 mg/100 g dw), contain Na, Ca and Fe in moderate amounts (>1 mg/100 g), and trace levels of Cr and Ni. Among the samples analysed, plain instant coffees are richer in minerals (p < 0.001), except for Na and Cr. Blends of coffee substitutes (barley, malt, chicory and rye) with coffee (20–66%) present intermediate amounts, while lower quantities are found in substitutes without coffee, particularly in barley. From a nutritional point of view the results indicate that the mean ingestion of two instant beverages per day (total of 4 g instant powder), either with or without coffee, cannot be regarded as important sources of minerals to the human diet, although providing a supplementation of some minerals, particularly Mg and Mn in instant coffees. Additionally, and for authentication purposes, the correlations observed between some elements and the coffee percentage in the blends, with particular significance for Mg amounts, provides a potential tool for the estimation of coffee in substitute blends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dental identification is the most valuable method to identify human remains in single cases with major postmortem alterations as well as in mass casualties because of its practicability and demanding reliability. Computed tomography (CT) has been investigated as a supportive tool for forensic identification and has proven to be valuable. It can also scan the dentition of a deceased within minutes. In the present study, we investigated currently used restorative materials using ultra-high-resolution dual-source CT and the extended CT scale for the purpose of a color-encoded, in scale, and artifact-free visualization in 3D volume rendering. In 122 human molars, 220 cavities with 2-, 3-, 4- and 5-mm diameter were prepared. With presently used filling materials (different composites, temporary filling materials, ceramic, and liner), these cavities were restored in six teeth for each material and cavity size (exception amalgam n = 1). The teeth were CT scanned and images reconstructed using an extended CT scale. Filling materials were analyzed in terms of resulting Hounsfield units (HU) and filling size representation within the images. Varying restorative materials showed distinctively differing radiopacities allowing for CT-data-based discrimination. Particularly, ceramic and composite fillings could be differentiated. The HU values were used to generate an updated volume-rendering preset for postmortem extended CT scale data of the dentition to easily visualize the position of restorations, the shape (in scale), and the material used which is color encoded in 3D. The results provide the scientific background for the application of 3D volume rendering to visualize the human dentition for forensic identification purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need for elemental analysis of biological matrices such as bone, teeth, and plant matter for sourcing purposes has emerged within the forensic and geochemical laboratories. Trace elemental analyses for the comparison of materials such as glass by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS has been shown to offer a high degree of discrimination between different manufacturing sources. Unit resolution ICP-MS instruments may suffer from some polyatomic interferences including 40Ar16O+, 40Ar 16O1H+, and 40Ca 16O+ that affect iron measurement at trace levels. Iron is an important element in the analysis of glass and also of interest for the analysis of several biological matrices. A comparison of the analytical performance of two different ICP-MS systems for iron analysis in glass for determining the method detection limits (MDLs), accuracy, and precision of the measurement is presented. Acid digestion and laser ablation methods are also compared. Iron polyatomic interferences were reduced or resolved by using dynamic reaction cell and high resolution ICP-MS. MDLs as low as 0.03 μg g-1 and 0.14 μg g-1 for laser ablation and solution based analyses respectively were achieved. The use of helium as a carrier gas demonstrated improvement in the detection limits of both iron isotopes (56Fe and 57Fe) in medium resolution for the HR-ICP-MS and with a dynamic reaction cell (DRC) coupled to a quadrupole ICP-MS system. ^ The development and application of robust analytical methods for the quantification of trace elements in biological matrices has lead to a better understanding of the potential utility of these measurements in forensic chemical analyses. Standard reference materials (SRMs) were used in the development of an analytical method using HR-ICP-MS and LA-HR-ICP-MS that was subsequently applied on the analysis of real samples. Bone, teeth and ashed marijuana samples were analyzed with the developed method. ^ Elemental analysis of bone samples from 12 different individuals provided discrimination between individuals, when femur and humerus bones were considered separately. Discrimination of 14 teeth samples based on elemental composition was achieved with the exception of one case where samples from the same individual were not associated with each other. The discrimination of 49 different ashed plant (cannabis) samples was achieved using the developed method. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need for elemental analysis of biological matrices such as bone, teeth, and plant matter for sourcing purposes has emerged within the forensic and geochemical laboratories. Trace elemental analyses for the comparison of aterials such as glass by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS has been shown to offer a high degree of discrimination between different manufacturing sources. Unit resolution ICP-MS instruments may suffer from some polyatomic interferences including 40Ar16O+, 40Ar16O1H+, and 40Ca16O+ that affect iron measurement at trace levels. Iron is an important element in the analysis of glass and also of interest for the analysis of several biological matrices. A comparison of the nalytical performance of two different ICP-MS systems for iron analysis in glass for determining the method detection limits (MDLs), accuracy, and precision of the measurement is presented. Acid digestion and laser ablation methods are also compared. Iron polyatomic interferences were reduced or resolved by using dynamic reaction cell and high resolution ICP-MS. MDLs as low as 0.03 ìg g-1 and 0.14 ìg g-1 for laser ablation and solution based analyses respectively were achieved. The use of helium as a carrier gas demonstrated improvement in the detection limits of both iron isotopes (56Fe and 57Fe) in medium resolution for the HR-ICP-MS and with a dynamic reaction cell (DRC) coupled to a quadrupole ICP-MS system. The development and application of robust analytical methods for the quantification of trace elements in biological matrices has lead to a better understanding of the potential utility of these measurements in forensic chemical analyses. Standard reference materials (SRMs) were used in the development of an analytical method using HR-ICP-MS and LA-HR-ICP-MS that was subsequently applied on the analysis of real samples. Bone, teeth and ashed marijuana samples were analyzed with the developed method. Elemental analysis of bone samples from 12 different individuals provided discrimination between individuals, when femur and humerus bones were considered separately. Discrimination of 14 teeth samples based on elemental composition was achieved with the exception of one case where samples from the same individual were not associated with each other. The discrimination of 49 different ashed plant (cannabis)samples was achieved using the developed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The following research project deals with the development of new analytical procedures aimed at the identification and quantification of the element zinc in different fractions of vegetable drugs used for weight loss, using the high-resolution continuum source atomic absorption spectrometry in flame. The determination of the levels of zinc was made in an AnalytikJena ContrAA 300 spectrometer in the principal line of Zn at 213.857 nm and wavelength integrated absorbance equal to 3 pixels. Calibration curves were obtained with linear dynamic range from 0.10 to 1.00 mg L-1, correlation coefficient equal to 0.9991 and limit of detection equal to 0.020 mg L-1. The total Zn content in the samples obtained after microwave-assisted acid digestion system were: 28.06 mg kg-1 (Artichoke), 31.49 mg kg-1 (Chamomile), 77.16 mg kg-1 (Gorse), 105.38 mg kg-1 (Horsetail), 32.37 mg kg-1 (Fennel) and 5.00 mg kg-1 (Senna). The extraction in aqueous environment assisted by microwave radiation produced extracts containing: 5.40 mg kg-1 (Artichoke), 10.65 mg kg-1 (Chamomile), 14.83 mg kg-1 (Gorse), 18.90 mg kg-1 (Horsetail), 7.80 mg kg-1 (Fennel), 3.24 mg kg-1 (Senna), corresponding to 19%, 34%, 19%, 18%, 24% and 64% of their total content of Zn, respectively. The amounts of Zn in the extracted samples from some plants indicate that this metal was strongly bounded to the plant's matrix. The sequential extraction using solvents and mixtures with different polarities (n-hexane, ethyl acetate, propanol, methanol, ethanol-water 1:1 (v/v), water) aimed the separation of different Zn containing species and water was considered the most efficient extractor. The Zn contents extracted were: 14.82 mg kg-1 (Artichoke), 16.82 mg kg-1 (Chamomile), 34.09 mg kg-1 (Gorse), 4.75 mg kg-1 (Senna), corresponding to 53% in the first two samples, 44% and 95% for the last two, respectively. It was observed that Zn is found complexed under

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Espresso coffee beverages prepared from pure origin roasted ground coffees from the major world growing regions (Brazil, Ethiopia, Colombia, India, Mexico, Honduras, Guatemala, Papua New Guinea, Kenya, Cuba, Timor, Mussulo and China) were characterized and compared in terms of their mineral content. Regular consumption of one cup of espresso contributes to a daily mineral intake varying from 0.002% (sodium; Central America) to 8.73% (potassium; Asia). The mineral profiles of the espresso beverages revealed significant inter- and intra-continental differences. South American pure origin coffees are on average richer in the analyzed elements except for calcium, while samples from Central America have generally lower mineral amounts (except for manganese). Manganese displayed significant differences (p < 0.05) among the countries of each characterized continent. Intercontinental and inter-country discrimination between the major world coffee producers were achieved by applying canonical discriminant analysis. Manganese and calcium were found to be the best chemical descriptors for origin.