832 resultados para high-intensity femtosecond laser pulse


Relevância:

100.00% 100.00%

Publicador:

Resumo:

利用高重复频率(1kHz)、吉瓦级飞秒激光脉冲实验验证了高强度飞秒脉冲在空气中的自压缩现象,研究了入射脉冲在不同初始啁啾情况下经空气中聚焦成丝后,时域及频域特性随入射脉冲能量的变化规律.实验结果表明,在无需后继色散补偿情况下,高强度飞秒脉冲仅通过在空气中的非线性传输过程就可以实现脉冲压缩;在入射脉冲为负啁啾情况下,实验观察到脉冲光谱及时域宽度同时得到压缩,并可获得比激光源所能提供的更短的近双曲正割型变换限脉冲.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of intense femtosecond laser pulses with hydrogen clusters has been experimentally studied. The hydrogen clusters were produced from expansion of high-pressure hydrogen gas (backed up to 8x10(6)Pa) into vacuum through a conical nozzle cryogenically cooled by liquid nitrogen. The average size of hydrogen clusters was estimated by Rayleigh scattering measurement and the maximum proton energy of up to 4.2keV has been obtained from the Coulomb explosion of hydrogen clusters under 2 x 10(16)W/cm(2) laser irradiation. Dependence of the maximum proton energy on cluster size and laser intensity was investigated, indicating the correlation between the laser intensity and the cluster size. The maximum proton energy is found to be directly proportional to the laser intensity, which is consistent with the theoretical prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The characteristics of harmonic radiation due to electron oscillation driven by an intense femtosecond laser pulse are analyzed considering a single electron model. An interesting modulated structure of the spectrum is observed and analyzed for different polarization. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width broadening of the high harmonic radiations can be limited. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Absolute measurement of detector quantum efficiency using optical parametric down-conversion has been extensively studied for the case of a continuous wave pump. In this paper, we have used the temporally and spatially correlated properties of the down-converted photon pairs generated in a nonlinear crystal pumped by a femtosecond laser pulse to perform an absolute measurement of detector quantum efficiency. The measured detector quantum efficiency is in excellent agreement with the measured value in the conventional way. A lens with a long focal length was adopted for efficiently increasing the intensity of the down-conversion entangled photon source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-compression of a relativistic Gaussian laser pulse propagating in a non-uniform plasma is investigated. A linear density inhomogeneity (density ramp) is assumed in the axial direction. The nonlinear Schrodinger equation is first solved within a one-dimensional geometry by using the paraxial formalism to demonstrate the occurrence of longitudinal pulse compression and the associated increase in intensity. Both longitudinal and transverse self-compression in plasma is examined for a finite extent Gaussian laser pulse. A pair of appropriate trial functions, for the beam width parameter (in space) and the pulse width parameter (in time) are defined and the corresponding equations of space and time evolution are derived. A numerical investigation shows that inhomogeneity in the plasma can further boost the compression mechanism and localize the pulse intensity, in comparison with a homogeneous plasma. A 100 fs pulse is compressed in an inhomogeneous plasma medium by more than ten times. Our findings indicate the possibility for the generation of particularly intense and short pulses, with relevance to the future development of tabletop high-power ultrashort laser pulse based particle acceleration devices and associated high harmonic generation. An extension of the model is proposed to investigate relativistic laser pulse compression in magnetized plasmas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reduction of proton acceleration in the interaction of a high-intensity, picosecond laser with a 50-mu m aluminum target was observed when 0.1-6 mu m of plastic was deposited on the back surface (opposite side of the laser). The maximum energy and number of energetic protons observed at the back of the target were greatly reduced in comparison to pure aluminum and plastic targets of the same thickness. This is attributed to the effect of the interface between the layers. Modeling of the electron propagation in the targets using a hybrid code showed strong magnetic-field generation at the interface and rapid surface heating of the aluminum layer, which may account for the results. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High power femtosecond laser pulses have unique properties that could lead to their application as ionization or activation sources in mass spectrometry. By concentrating many photons into pulse lengths approaching the timescales associated with atomic motion, very strong electric field strengths are generated, which can efficiently ionize and fragment molecules without the need for resonant absorption. However, the complex interaction between these pulses and biomolecular species is not well understood. To address this issue, we have studied the interaction of intense, femtosecond pulses with a number of amino acids and small peptides. Unlike previous studies, we have used neutral forms of these molecular targets, which allowed us to investigate dissociation of radical cations without the spectra being complicated by the action of mobile protons. We found fragmentation was dominated by fast, radical-initiated dissociation close to the charge site generated by the initial ionization or from subsequent ultrafast migration of this charge. Fragments with lower yields, which are useful for structural determinations, were also observed and attributed to radical migration caused by hydrogen atom transfer within the molecule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

高强度飞秒激光脉冲的腔外压缩是获得高次谐波阿秒脉冲驱动源的必要手段。实验研究了超强超短飞秒激光脉冲在经过块状介质后的光谱展宽和色散补偿压缩现象。单脉冲能量0.26mJ,脉宽50fs的激光脉冲经透镜在空气中聚焦后再入射到块状材料上,出射脉冲光谱被展宽到接近40nm。由于在块状材料中的自聚焦效应,出射光束质量变好并保持较小的空间啁啾。利用熔融石英棱镜对补偿带有正色散的出射脉冲,最后得到〉0.1mJ,19fs的压缩脉冲。利用SPIDER装置测量了出射脉冲的脉宽和光谱相位。整个系统的能量效率大约为35%,压缩后的

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We found reversible dark-center diffraction of the transmitted probe beam passing through the chromium film. which is induced by the pump femtosecond laser. The dark-center diffraction of I he transmitted probe beam appears and disappears with and without the pump beam. A view of diffractive optics with binary phase plate is put forward, which explains the reversible dark-center diffractive optical phenomenon. The pre-ablated hole on the metal film can be regarded as a uniform light filed without phase modulation, the Surrounding Circular part around the pre-ablated hole can be regarded as "phase modulated". Therefore, this diffraction optic view might be helpful for us to understand the phase change of the metal film introduced by the femtosecond laser pulse. (C) 2008 Elsevier B.V, All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of high-intensity laser pulses with matter releases instantaneously ultra-large currents of highly energetic electrons, leading to the generation of highly-transient, large-amplitude electric and magnetic fields. We report results of recent experiments in which such charge dynamics have been studied by using proton probing techniques able to provide maps of the electrostatic fields with high spatial and temporal resolution. The dynamics of ponderomotive channeling in underdense plasmas have been studied in this way, as also the processes of Debye sheath formation and MeV ion front expansion at the rear of laser-irradiated thin metallic foils. Laser-driven impulsive fields at the surface of solid targets can be applied for energy-selective ion beam focusing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatiotemporal pulse dynamics of a high-power relativistic laser pulse interacting with an electron-positron-ion plasmas is investigated theoretically and numerically. The occurrence of pulse compression is studied. The dependence of the mechanism on the concentration of the background ions in electron positron plasma is emphasized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the occurrence of the optical Kerr effect and two-photon absorption when an oil-based magnetic Fe3O4 nanoparticles colloidal suspension is illuminated with high intensity femtosecond laser pulses. The frequency of the pulses is controlled and the Z-scan technique is employed in our measurements of the nonlinear optical Kerr coefficient (n(2)) and two-photon absorption coefficient (beta). From these values it was possible to calculate the real and imaginary parts of the third-order susceptibility. We observed that increasing the pulse frequency, additional physical processes take place, increasing artificially the absolute values of n(2) and beta. The experimental conditions are discussed to assure the obtention of reliable values of these nonlinear optical parameters, which may be useful in all-optical switching and optical power limiting applications. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4723829]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the results of experimental and theoretical study of an energy absorption of femtosecond laser pulse in fused silica. Fundamental and second harmonics of ytterbium laser were used in experiment while general case was considered theoretically and numerically. More efficient absorption at the second harmonics is confirmed both experimentally and numerically. Quantitative characterization of the theoretical model is performed by fitting key parameters of the absorption process such as cross-section of multi-photon absorption and effective electronic collision and recombination times.