976 resultados para high magnetic field annealing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature and magnetic field studies of the elastic constants of the chromium spinel CdCr2O4 show pronounced anomalies related to strong spin-phonon coupling in this frustrated antiferromagnet. A detailed comparison of the longitudinal acoustic mode propagating along the 111] direction with a theory based on an exchange-striction mechanism leads to an estimate of the strength of the magnetoelastic interaction. The derived spin-phonon coupling constant is in good agreement with previous determinations based on infrared absorption. Further insight is gained from intermediate and high magnetic field experiments in the field regime of the magnetization plateau. The role of the antisymmetric Dzyaloshinskii-Moriya interaction is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dikpati and Choudhuri (1993, 1995) developed a model for the poleward migration of the weak diffuse magnetic field on the Sun's surface. This field was identified with the poloidal component produced by the solar dynamo operating at the base of the convection zone, and its evolution was studied by considering the effects of meridional circulation and turbulent diffusion. The earlier model is extended in this paper by incorporating the flux from, the decay of tilted active regions near the solar surface as an additional source of the poloidal field. This extended model can now explain various low-latitude features in the time-latitude diagram of the weak diffuse fields. These low-latitude features could not be accounted for in the earlier model, which was very successful in modeling the behavior at high latitudes. The time-latitude diagrams show that regions of a particular polarity often have 'tongues' of opposite polarity. Such tongues can be produced in the theoretical model by incorporating fluctuations in the source term arising out of the decaying active regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prebreakdown currents in a coaxial cylindrical geometry in nitrogen have been measured with and without a crossed magnetic field. The range of parameters used in the investigation are 2.6 ÿ p ÿ 14.5 torr, 50 ÿ (E/p) ÿ 420 V cm-1 torr-1, and 43.0 ÿ H/p ÿ 1185 Oe torr-1 (p is the pressure, E is the electric field, and H is the magnetic field). The initial photoelectric current is obtained by allowing photons produced in an auxiliary glow discharge to strike the cathode. Ions and electrons produced in the auxiliary discharge are prevented from reaching the main gap by suitable shielding. By modifying the Rice equation for back diffusion, the measured ionization current multiplication without a crossed magnetic field is compared with the multiplication predicted by the Townsend growth equation for nonuniform electric fields. It is observed that over the range of 50 Ã�¿ (E/P)max Ã�¿ 250 [(E/P)max is the value of E/p at the central electrode of the coaxial system] measured and calculated multiplication of current agree with each other. With a crossed magnetic field the prebreakdown currents have been measured and compared with the theoretically calculated currents using the equivalent pressure concept. Agreement between the calculated and measured currents is not satisfactory, and this has been attributed more to the uncertainty in the collision frequency data available than nonuniformity of the electric field. Sparking potentials have been measured with and without a crossed magnetic field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The change in thermodynamic quantities (e. g., entropy, specific heat etc.) by the application of magnetic field in the case of the high-T-c superconductor YBCO system is examined phenomenological by the Ginzburg-Landau theory of anisotropic type-II superconductors. An expression for the change in the entropy (Delta S) and change in specific heat (Delta C) in a magnetic field for any general orientation of an applied magnetic field B-a with respect to the crystallographic c-axis is obtained. The observed large reduction of specific heat anomaly just below the superconducting transition and the observed variation of entropy with magnetic field are explained quantitatively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study electronic transport across a helical edge state exposed to a uniform magnetic ((B) over right arrow) field over a finite length. We show that this system exhibits Fabry-Perot-type resonances in electronic transport. The intrinsic spin anisotropy of the helical edge states allows us to tune these resonances by changing the direction of the (B) over right arrow field while keeping its magnitude constant. This is in sharp contrast to the case of nonhelical one-dimensional electron gases with a parabolic dispersion, where similar resonances do appear in individual spin channels (up arrow and down arrow) separately which, however, cannot be tuned by merely changing the direction of the (B) over right arrow field. These resonances provide a unique way to probe the helical nature of the theory. We study the robustness of these resonances against a possible static impurity in the channel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate the distinct glassy transport phenomena associated with the phase separated and spin-glass-like phases of La0.85Sr0.15CoO3, prepared under different heat-treatment conditions. The low-temperature annealed (phase-separated) sample, exhibits a small change in resistance, with evolution of time, as compared to the high-temperature annealed (spin glass) one. However, the resistance change as a function of time, in both cases, is well described by a stretched exponential fit, signifying the slow dynamics. Moreover, the ultraviolet spectroscopy study evidences a relatively higher density of states in the vicinity of EF for low-temperature annealed sample and this correctly points to its less semiconducting behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the effects of extended and localized potentials and a magnetic field on the Dirac electrons residing at the surface of a three-dimensional topological insulator like Bi2Se3. We use a lattice model to numerically study the various states; we show how the potentials can be chosen in a way which effectively avoids the problem of fermion doubling on a lattice. We show that extended potentials of different shapes can give rise to states which propagate freely along the potential but decay exponentially away from it. For an infinitely long potential barrier, the dispersion and spin structure of these states are unusual and these can be varied continuously by changing the barrier strength. In the presence of a magnetic field applied perpendicular to the surface, these states become separated from the gapless surface states by a gap, thereby giving rise to a quasi-one-dimensional system. Similarly, a magnetic field along with a localized potential can give rise to exponentially localized states which are separated from the surface states by a gap and thereby form a zero-dimensional system. Finally, we show that a long barrier and an impurity potential can produce bound states which are localized at the impurity, and an ``L''-shaped potential can have both bound states at the corner of the L and extended states which travel along the arms of the potential. Our work opens the way to constructing wave guides for Dirac electrons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

in the corona, consisting of an eruptive prominence and/or a magnetic flux region (loop or arcade, or blob) in front of the prominence. Ahead of the piston, there is a compressed flow, which produces a shock front. This high-density region corresponds to the bright feature of the transient. Behind the piston, there is a rarefaction region, which corresponds to the dark feature of the transient. Therefore, both the bright and dark features of the transient may be explained at the same time by the dynamical process of the moving piston.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation consists of three parts. In Part I, it is shown that looping trajectories cannot exist in finite amplitude stationary hydromagnetic waves propagating across a magnetic field in a quasi-neutral cold collision-free plasma. In Part II, time-dependent solutions in series expansion are presented for the magnetic piston problem, which describes waves propagating into a quasi-neutral cold collision-free plasma, ensuing from magnetic disturbances on the boundary of the plasma. The expansion is equivalent to Picard's successive approximations. It is then shown that orbit crossings of plasma particles occur on the boundary for strong disturbances and inside the plasma for weak disturbances. In Part III, the existence of periodic waves propagating at an arbitrary angle to the magnetic field in a plasma is demonstrated by Stokes expansions in amplitude. Then stability analysis is made for such periodic waves with respect to side-band frequency disturbances. It is shown that waves of slow mode are unstable whereas waves of fast mode are stable if the frequency is below the cutoff frequency. The cutoff frequency depends on the propagation angle. For longitudinal propagation the cutoff frequency is equal to one-fourth of the electron's gyrofrequency. For transverse propagation the cutoff frequency is so high that waves of all frequencies are stable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical and experimental studies of a gas laser amplifier are presented, assuming the amplifier is operating with a saturating optical frequency signal. The analysis is primarily concerned with the effects of the gas pressure and the presence of an axial magnetic field on the characteristics of the amplifying medium. Semiclassical radiation theory is used, along with a density matrix description of the atomic medium which relates the motion of single atoms to the macroscopic observables. A two-level description of the atom, using phenomenological source rates and decay rates, forms the basis of our analysis of the gas laser medium. Pressure effects are taken into account to a large extent through suitable choices of decay rate parameters.

Two methods for calculating the induced polarization of the atomic medium are used. The first method utilizes a perturbation expansion which is valid for signal intensities which barely reach saturation strength, and it is quite general in applicability. The second method is valid for arbitrarily strong signals, but it yields tractable solutions only for zero magnetic field or for axial magnetic fields large enough such that the Zeeman splitting is much larger than the power broadened homogeneous linewidth of the laser transition. The effects of pressure broadening of the homogeneous spectral linewidth are included in both the weak-signal and strong-signal theories; however the effects of Zeeman sublevel-mixing collisions are taken into account only in the weak-signal theory.

The behavior of a He-Ne gas laser amplifier in the presence of an axial magnetic field has been studied experimentally by measuring gain and Faraday rotation of linearly polarized resonant laser signals for various values of input signal intensity, and by measuring nonlinearity - induced anisotropy for elliptically polarized resonant laser signals of various input intensities. Two high-gain transitions in the 3.39-μ region were used for study: a J = 1 to J = 2 (3s2 → 3p4) transition and a J = 1 to J = 1 (3s2 → 3p2) transition. The input signals were tuned to the centers of their respective resonant gain lines.

The experimental results agree quite well with corresponding theoretical expressions which have been developed to include the nonlinear effects of saturation strength signals. The experimental results clearly show saturation of Faraday rotation, and for the J = 1 t o J = 1 transition a Faraday rotation reversal and a traveling wave gain dip are seen for small values of axial magnetic field. The nonlinearity induced anisotropy shows a marked dependence on the gas pressure in the amplifier tube for the J = 1 to J = 2 transition; this dependence agrees with the predictions of the general perturbational or weak signal theory when allowances are made for the effects of Zeeman sublevel-mixing collisions. The results provide a method for measuring the upper (neon 3s2) level quadrupole moment decay rate, the dipole moment decay rates for the 3s2 → 3p4 and 3s2 → 3p2 transitions, and the effects of various types of collision processes on these decay rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the evolution of localized blobs of swirling or buoyant fluid in an infinite, inviscid, electrically conducting fluid. We consider the three cases of a strong imposed magnetic field, a weak imposed magnetic field, and no magnetic field. For a swirling blob in the absence of a magnetic field, we find, in line with others, that the blob bursts radially outward under the action of the centrifugal force, forming a thin annular vortex sheet. A simple model of this process predicts that the vortex sheet thins exponentially fast and that it moves radially outward with constant velocity. These predictions are verified by high-resolution numerical simulations. When an intense magnetic field is applied, this phenomenon is suppressed, with the energy and angular momentum of the blob now diffusing axially along the magnetic field lines, converting the blob into a columnar structure. For modest or weak magnetic fields, there are elements of both types of behavior, with the radial bursting dominating over axial diffusion for weak fields. However, even when the magnetic field is very weak, the flow structure is quite distinct to that of the nonmagnetic case. In particular, a small but finite magnetic field places a lower bound on the thickness of the annular vortex sheet and produces an annulus of counter-rotating fluid that surrounds the vortex core. The behavior of the buoyant blob is similar. In the absence of a magnetic field, it rapidly develops the mushroomlike shape of a thermal, with a thin vortex sheet at the top and sides of the mushroom. Again, a simple model of this process predicts that the vortex sheet at the top of the thermal thins exponentially fast and rises with constant velocity. These predictions are consistent with earlier numerical simulations. Curiously, however, it is shown that the net vertical momentum associated with the blob increases linearly in time, despite the fact that the vertical velocity at the front of the thermal is constant. As with the swirling blob, an imposed magnetic field inhibits the formation of a vortex sheet. A strong magnetic field completely suppresses the phenomenon, replacing it with an axial diffusion of momentum, while a weak magnetic field allows the sheet to form, but places a lower bound on its thickness. The magnetic field does not, however, change the net vertical momentum of the blob, which always increases linearly with time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When bulk RE-BCO superconductors are used as permanent magnets in engineering applications, they are likely to experience transient variations of the applied magnetic field. The resulting vortex motion may cause a significant temperature increase. As a consequence the initial trapped flux is reduced. In the present work, we first focus on the cause of a temperature increase. The temperature distribution within a superconducting finite cylinder subjected to an alternating magnetic field is theoretically predicted. Results are compared to experimental data obtained by two temperature sensors attached to a bulk YBCO pellet. Second, we consider curative methods for reducing the effect of heat flux on the temperature increase. Hall-probe mappings on YBCO samples maintained out of the thermal equilibrium are performed for two different morphologies : a plain single domain and a single domain with a regularly spaced hole array. The drilled single-domain displays a trapped induction which is weakly affected by the local heating while displaying a high trapped field. © 2006 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic anisotropy in ytterbium iron garnet (YbIG) is theoretically investigated under high magnetic fields (up to 160 kOe). According to the crystal field effect in ytterbium gallium garnet (YbGaG), a detailed discussion of crystal-field interaction in YbIG is presented where a suitable set of crystal-field parameters is obtained. Meanwhile, the influences of nine crystal-field parameters on the crystal-field energy splitting are analyzed. On the other hand, considering the ytterbium-iron (Yb-Fe) superexchange interaction of YbIG, the spontaneous magnetization is calculated at different temperatures for the [111] direction. In particular, we demonstrate that the Wesis constant lambda is the function of 1/T in YbIG. In addition, the field dependences of the magnetization for the [110] and [111] directions are theoretically described where a noticeable anisotropy can be found. Our theory further confirms the great contribution of anisotropic Yb-Fe superexchange interaction to the anisotropy of the magnetization in YbIG. Moreover, our theoretical results are compared with the available experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-12-05T05:05:17Z No. of bitstreams: 1 Note:A time-resolved Kerr rotation system with a rotatable in-plane magnetic field.pdf: 620425 bytes, checksum: 354584f39f341db1d35ee96d2b0fe14e (MD5)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Application of electron-cooling upgrades the quality of ion beams in the storage rings and brings new problems. The transverse magnetic field distorts the ion orbit while guiding the intense electron beam. The closed-orbit distortion should be and can be localized and controlled well inside the ring acceptance. This paper deals with the field in the e-cool section and concomitant COD of ion orbit and shows the correction scheme.