948 resultados para hierarchical processing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many methodologies dealing with prediction or simulation of soft tissue deformations on medical image data require preprocessing of the data in order to produce a different shape representation that complies with standard methodologies, such as mass–spring networks, finite element method s (FEM). On the other hand, methodologies working directly on the image space normally do not take into account mechanical behavior of tissues and tend to lack physics foundations driving soft tissue deformations. This chapter presents a method to simulate soft tissue deformations based on coupled concepts from image analysis and mechanics theory. The proposed methodology is based on a robust stochastic approach that takes into account material properties retrieved directly from the image, concepts from continuum mechanics and FEM. The optimization framework is solved within a hierarchical Markov random field (HMRF) which is implemented on the graphics processor unit (GPU See Graphics processing unit ).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have shown that vestibular stimulation can influence affective processes. In the present study, we examined whether emotional information can also modulate vestibular perception. Participants performed a vestibular discrimination task on a motion platform while viewing emotional pictures. Six different picture categories were taken from the International Affective Picture System: mutilation, threat, snakes, neutral objects, sports and erotic pictures. Using a Bayesian hierarchical approach we were able to show that vestibular discrimination improved when participants viewed emotionally negative pictures (mutilation, threat, snake) when compared to neutral objects. There was no difference in vestibular discrimination while viewing emotionally positive compared to neutral pictures. We conclude that some of the mechanisms involved in the processing of vestibular information are also sensitive to emotional content. Emotional information signals importance and mobilizes the body for action. In case of danger, a successful motor response requires precise vestibular processing. Therefore, negative emotional information improves processing of vestibular information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have shown that vestibular stimulation can influence affective processes. In the present study, we examined whether emotional information can also modulate vestibular perception. Participants performed a vestibular discrimination task on a motion platform while viewing emotional pictures. Six different picture categories were taken from the International Affective Picture System: mutilation, threat, snakes, neutral objects, sports and erotic pictures. Using a Bayesian hierarchical approach we were able to show that vestibular discrimination improved when participants viewed emotionally negative pictures (mutilation, threat, snake) when compared to neutral objects. There was no difference in vestibular discrimination while viewing emotionally positive compared to neutral pictures. We conclude that some of the mechanisms involved in the processing of vestibular information are also sensitive to emotional content. Emotional information signals importance and mobilizes the body for action. In case of danger, a successful motor response requires precise vestibular processing. Therefore, negative emotional information improves processing of vestibular information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In clinical practice, traditional X-ray radiography is widely used, and knowledge of landmarks and contours in anteroposterior (AP) pelvis X-rays is invaluable for computer aided diagnosis, hip surgery planning and image-guided interventions. This paper presents a fully automatic approach for landmark detection and shape segmentation of both pelvis and femur in conventional AP X-ray images. Our approach is based on the framework of landmark detection via Random Forest (RF) regression and shape regularization via hierarchical sparse shape composition. We propose a visual feature FL-HoG (Flexible- Level Histogram of Oriented Gradients) and a feature selection algorithm based on trace radio optimization to improve the robustness and the efficacy of RF-based landmark detection. The landmark detection result is then used in a hierarchical sparse shape composition framework for shape regularization. Finally, the extracted shape contour is fine-tuned by a post-processing step based on low level image features. The experimental results demonstrate that our feature selection algorithm reduces the feature dimension in a factor of 40 and improves both training and test efficiency. Further experiments conducted on 436 clinical AP pelvis X-rays show that our approach achieves an average point-to-curve error around 1.2 mm for femur and 1.9 mm for pelvis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have shown that vestibular stimulation can influence affective processes. In the present study, we examined whether emotional information can also modulate vestibular perception. Participants performed a vestibular discrimination task on a motion platform while viewing emotional pictures. Six different picture categories were taken from the International Affective Picture System: mutilation, threat, snakes, neutral objects, sports, and erotic pictures. Using a Bayesian hierarchical approach, we were able to show that vestibular discrimination improved when participants viewed emotionally negative pictures (mutilation, threat, snake) when compared to neutral/positive objects. We conclude that some of the mechanisms involved in the processing of vestibular information are also sensitive to emotional content. Emotional information signals importance and mobilizes the body for action. In case of danger, a successful motor response requires precise vestibular processing. Therefore, negative emotional information improves processing of vestibular information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The functional specialization and hierarchical organization of multiple areas in rhesus monkey auditory cortex were examined with various types of complex sounds. Neurons in the lateral belt areas of the superior temporal gyrus were tuned to the best center frequency and bandwidth of band-passed noise bursts. They were also selective for the rate and direction of linear frequency modulated sweeps. Many neurons showed a preference for a limited number of species-specific vocalizations (“monkey calls”). These response selectivities can be explained by nonlinear spectral and temporal integration mechanisms. In a separate series of experiments, monkey calls were presented at different spatial locations, and the tuning of lateral belt neurons to monkey calls and spatial location was determined. Of the three belt areas the anterolateral area shows the highest degree of specificity for monkey calls, whereas neurons in the caudolateral area display the greatest spatial selectivity. We conclude that the cortical auditory system of primates is divided into at least two processing streams, a spatial stream that originates in the caudal part of the superior temporal gyrus and projects to the parietal cortex, and a pattern or object stream originating in the more anterior portions of the lateral belt. A similar division of labor can be seen in human auditory cortex by using functional neuroimaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"This report reproduces a thesis of the same title submitted to the Department of Electrical Engineering, Massachusetts Institute of Technology, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, May 1970."--p. 2

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the rapid increase in both centralized video archives and distributed WWW video resources, content-based video retrieval is gaining its importance. To support such applications efficiently, content-based video indexing must be addressed. Typically, each video is represented by a sequence of frames. Due to the high dimensionality of frame representation and the large number of frames, video indexing introduces an additional degree of complexity. In this paper, we address the problem of content-based video indexing and propose an efficient solution, called the Ordered VA-File (OVA-File) based on the VA-file. OVA-File is a hierarchical structure and has two novel features: 1) partitioning the whole file into slices such that only a small number of slices are accessed and checked during k Nearest Neighbor (kNN) search and 2) efficient handling of insertions of new vectors into the OVA-File, such that the average distance between the new vectors and those approximations near that position is minimized. To facilitate a search, we present an efficient approximate kNN algorithm named Ordered VA-LOW (OVA-LOW) based on the proposed OVA-File. OVA-LOW first chooses possible OVA-Slices by ranking the distances between their corresponding centers and the query vector, and then visits all approximations in the selected OVA-Slices to work out approximate kNN. The number of possible OVA-Slices is controlled by a user-defined parameter delta. By adjusting delta, OVA-LOW provides a trade-off between the query cost and the result quality. Query by video clip consisting of multiple frames is also discussed. Extensive experimental studies using real video data sets were conducted and the results showed that our methods can yield a significant speed-up over an existing VA-file-based method and iDistance with high query result quality. Furthermore, by incorporating temporal correlation of video content, our methods achieved much more efficient performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis examines children's consumer choice behaviour using an information processing perspective, with the fundamental goal of applying academic research to practical marketing and commercial problems. Proceeding a preface, which describes the academic and commercial terms of reference within which this interdisciplinary study is couched, the thesis comprises four discernible parts. Initially, the rationale inherent in adopting an information processing perspective is justified and the diverse array of topics which have bearing on children's consumer processing and behaviour are aggregated. The second part uses this perspective as a springboard to appraise the little explored role of memory, and especially memory structure, as a central cognitive component in children's consumer choice processing. The main research theme explores the ease with which 10 and 11 year olds retrieve contemporary consumer information from subjectively defined memory organisations. Adopting a sort-recall paradigm, hierarchical retrieval processing is stimulated and it is contended that when two items, known to be stored proximally in the memory organisation are not recalled adjacently, this discrepancy is indicative of retrieval processing ease. Results illustrate the marked influence of task conditions and orientation of memory structure on retrieval; these conclusions are accounted for in terms of input and integration failure. The third section develops the foregoing interpellations in the marketing context. A straightforward methodology for structuring marketing situations is postulated, a basis for segmenting children's markets using processing characteristics is adopted, and criteria for communicating brand support information to children are discussed. A taxonomy of market-induced processing conditions is developed. Finally, a case study with topical commercial significance is described. The development, launch and marketing of a new product in the confectionery market is outlined, the aetiology of its subsequent demise identified and expounded, and prescriptive guidelines are put forward to help avert future repetition of marketing misjudgements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address the important bioinformatics problem of predicting protein function from a protein's primary sequence. We consider the functional classification of G-Protein-Coupled Receptors (GPCRs), whose functions are specified in a class hierarchy. We tackle this task using a novel top-down hierarchical classification system where, for each node in the class hierarchy, the predictor attributes to be used in that node and the classifier to be applied to the selected attributes are chosen in a data-driven manner. Compared with a previous hierarchical classification system selecting classifiers only, our new system significantly reduced processing time without significantly sacrificing predictive accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a novel algorithm for medial surfaces extraction that is based on the density-corrected Hamiltonian analysis. The approach extracts the skeleton directly from a triangulated mesh and adopts an adaptive octree-based approach in which only skeletal voxels are refined to a lower level of the hierarchy, resulting in robust and accurate skeletons at extremely high resolution. The quality of the extracted medial surfaces is confirmed by an extensive set of experiments. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a detailed analysis of the application of a multi-scale Hierarchical Reconstruction method for solving a family of ill-posed linear inverse problems. When the observations on the unknown quantity of interest and the observation operators are known, these inverse problems are concerned with the recovery of the unknown from its observations. Although the observation operators we consider are linear, they are inevitably ill-posed in various ways. We recall in this context the classical Tikhonov regularization method with a stabilizing function which targets the specific ill-posedness from the observation operators and preserves desired features of the unknown. Having studied the mechanism of the Tikhonov regularization, we propose a multi-scale generalization to the Tikhonov regularization method, so-called the Hierarchical Reconstruction (HR) method. First introduction of the HR method can be traced back to the Hierarchical Decomposition method in Image Processing. The HR method successively extracts information from the previous hierarchical residual to the current hierarchical term at a finer hierarchical scale. As the sum of all the hierarchical terms, the hierarchical sum from the HR method provides an reasonable approximate solution to the unknown, when the observation matrix satisfies certain conditions with specific stabilizing functions. When compared to the Tikhonov regularization method on solving the same inverse problems, the HR method is shown to be able to decrease the total number of iterations, reduce the approximation error, and offer self control of the approximation distance between the hierarchical sum and the unknown, thanks to using a ladder of finitely many hierarchical scales. We report numerical experiments supporting our claims on these advantages the HR method has over the Tikhonov regularization method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A flexible and multipurpose bio-inspired hierarchical model for analyzing musical timbre is presented in this paper. Inspired by findings in the fields of neuroscience, computational neuroscience, and psychoacoustics, not only does the model extract spectral and temporal characteristics of a signal, but it also analyzes amplitude modulations on different timescales. It uses a cochlear filter bank to resolve the spectral components of a sound, lateral inhibition to enhance spectral resolution, and a modulation filter bank to extract the global temporal envelope and roughness of the sound from amplitude modulations. The model was evaluated in three applications. First, it was used to simulate subjective data from two roughness experiments. Second, it was used for musical instrument classification using the k-NN algorithm and a Bayesian network. Third, it was applied to find the features that characterize sounds whose timbres were labeled in an audiovisual experiment. The successful application of the proposed model in these diverse tasks revealed its potential in capturing timbral information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En este trabajo se propone un nuevo sistema híbrido para el análisis de sentimientos en clase múltiple basado en el uso del diccionario General Inquirer (GI) y un enfoque jerárquico del clasificador Logistic Model Tree (LMT). Este nuevo sistema se compone de tres capas, la capa bipolar (BL) que consta de un LMT (LMT-1) para la clasificación de la polaridad de sentimientos, mientras que la segunda capa es la capa de la Intensidad (IL) y comprende dos LMTs (LMT-2 y LMT3) para detectar por separado tres intensidades de sentimientos positivos y tres intensidades de sentimientos negativos. Sólo en la fase de construcción, la capa de Agrupación (GL) se utiliza para agrupar las instancias positivas y negativas mediante el empleo de 2 k-means, respectivamente. En la fase de Pre-procesamiento, los textos son segmentados por palabras que son etiquetadas, reducidas a sus raíces y sometidas finalmente al diccionario GI con el objetivo de contar y etiquetar sólo los verbos, los sustantivos, los adjetivos y los adverbios con 24 marcadores que se utilizan luego para calcular los vectores de características. En la fase de Clasificación de Sentimientos, los vectores de características se introducen primero al LMT-1, a continuación, se agrupan en GL según la etiqueta de clase, después se etiquetan estos grupos de forma manual, y finalmente las instancias positivas son introducidas a LMT-2 y las instancias negativas a LMT-3. Los tres árboles están entrenados y evaluados usando las bases de datos Movie Review y SenTube con validación cruzada estratificada de 10-pliegues. LMT-1 produce un árbol de 48 hojas y 95 de tamaño, con 90,88% de exactitud, mientras que tanto LMT-2 y LMT-3 proporcionan dos árboles de una hoja y uno de tamaño, con 99,28% y 99,37% de exactitud,respectivamente. Los experimentos muestran que la metodología de clasificación jerárquica propuesta da un mejor rendimiento en comparación con otros enfoques prevalecientes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Companies operating in the wood processing industry need to increase their productivity by implementing automation technologies in their production systems. An increasing global competition and rising raw material prizes challenge their competitiveness. Yet, too extensive automation brings risks such as a deterioration in situation awareness and operator deskilling. The concept of Levels of Automation is generally seen as means to achieve a balanced task allocation between the operators’ skills and competences and the need for automation technology relieving the humans from repetitive or hazardous work activities. The aim of this thesis was to examine to what extent existing methods for assessing Levels of Automation in production processes are applicable in the wood processing industry when focusing on an improved competitiveness of production systems. This was done by answering the following research questions (RQ): RQ1: What method is most appropriate to be applied with measuring Levels of Automation in the wood processing industry? RQ2: How can the measurement of Levels of Automation contribute to an improved competitiveness of the wood processing industry’s production processes? Literature reviews were used to identify the main characteristics of the wood processing industry affecting its automation potential and appropriate assessment methods for Levels of Automation in order to answer RQ1. When selecting the most suitable method, factors like the relevance to the target industry, application complexity or operational level the method is penetrating were important. The DYNAMO++ method, which covers both a rather quantitative technical-physical and a more qualitative social-cognitive dimension, was seen as most appropriate when taking into account these factors. To answer RQ 2, a case study was undertaken at a major Swedish manufacturer of interior wood products to point out paths how the measurement of Levels of Automation contributes to an improved competitiveness of the wood processing industry. The focus was on the task level on shop floor and concrete improvement suggestions were elaborated after applying the measurement method for Levels of Automation. Main aspects considered for generalization were enhancements regarding ergonomics in process design and cognitive support tools for shop-floor personnel through task standardization. Furthermore, difficulties regarding the automation of grading and sorting processes due to the heterogeneous material properties of wood argue for a suitable arrangement of human intervention options in terms of work task allocation.  The application of a modified version of DYNAMO++ reveals its pros and cons during a case study which covers a high operator involvement in the improvement process and the distinct predisposition of DYNAMO++ to be applied in an assembly system.