795 resultados para hierarchical clustering
Resumo:
Non-parametric multivariate analyses of complex ecological datasets are widely used. Following appropriate pre-treatment of the data inter-sample resemblances are calculated using appropriate measures. Ordination and clustering derived from these resemblances are used to visualise relationships among samples (or variables). Hierarchical agglomerative clustering with group-average (UPGMA) linkage is often the clustering method chosen. Using an example dataset of zooplankton densities from the Bristol Channel and Severn Estuary, UK, a range of existing and new clustering methods are applied and the results compared. Although the examples focus on analysis of samples, the methods may also be applied to species analysis. Dendrograms derived by hierarchical clustering are compared using cophenetic correlations, which are also used to determine optimum in flexible beta clustering. A plot of cophenetic correlation against original dissimilarities reveals that a tree may be a poor representation of the full multivariate information. UNCTREE is an unconstrained binary divisive clustering algorithm in which values of the ANOSIM R statistic are used to determine (binary) splits in the data, to form a dendrogram. A form of flat clustering, k-R clustering, uses a combination of ANOSIM R and Similarity Profiles (SIMPROF) analyses to determine the optimum value of k, the number of groups into which samples should be clustered, and the sample membership of the groups. Robust outcomes from the application of such a range of differing techniques to the same resemblance matrix, as here, result in greater confidence in the validity of a clustering approach.
Resumo:
Non-parametric multivariate analyses of complex ecological datasets are widely used. Following appropriate pre-treatment of the data inter-sample resemblances are calculated using appropriate measures. Ordination and clustering derived from these resemblances are used to visualise relationships among samples (or variables). Hierarchical agglomerative clustering with group-average (UPGMA) linkage is often the clustering method chosen. Using an example dataset of zooplankton densities from the Bristol Channel and Severn Estuary, UK, a range of existing and new clustering methods are applied and the results compared. Although the examples focus on analysis of samples, the methods may also be applied to species analysis. Dendrograms derived by hierarchical clustering are compared using cophenetic correlations, which are also used to determine optimum in flexible beta clustering. A plot of cophenetic correlation against original dissimilarities reveals that a tree may be a poor representation of the full multivariate information. UNCTREE is an unconstrained binary divisive clustering algorithm in which values of the ANOSIM R statistic are used to determine (binary) splits in the data, to form a dendrogram. A form of flat clustering, k-R clustering, uses a combination of ANOSIM R and Similarity Profiles (SIMPROF) analyses to determine the optimum value of k, the number of groups into which samples should be clustered, and the sample membership of the groups. Robust outcomes from the application of such a range of differing techniques to the same resemblance matrix, as here, result in greater confidence in the validity of a clustering approach.
Resumo:
© 2014 Cises This work is distributed with License Creative Commons Attribution-Non commercial-No derivatives 4.0 International (CC BY-BC-ND 4.0)
Resumo:
We have used microarray gene expression profiling and machine learning to predict the presence of BRAF mutations in a panel of 61 melanoma cell lines. The BRAF gene was found to be mutated in 42 samples (69%) and intragenic mutations of the NRAS gene were detected in seven samples (11%). No cell line carried mutations of both genes. Using support vector machines, we have built a classifier that differentiates between melanoma cell lines based on BRAF mutation status. As few as 83 genes are able to discriminate between BRAF mutant and BRAF wild-type samples with clear separation observed using hierarchical clustering. Multidimensional scaling was used to visualize the relationship between a BRAF mutation signature and that of a generalized mitogen-activated protein kinase (MAPK) activation (either BRAF or NRAS mutation) in the context of the discriminating gene list. We observed that samples carrying NRAS mutations lie somewhere between those with or without BRAF mutations. These observations suggest that there are gene-specific mutation signals in addition to a common MAPK activation that result from the pleiotropic effects of either BRAF or NRAS on other signaling pathways, leading to measurably different transcriptional changes.
Resumo:
Evidence exists that repositories of business process models used in industrial practice contain significant amounts of duplication. This duplication may stem from the fact that the repository describes variants of the same pro- cesses and/or because of copy/pasting activity throughout the lifetime of the repository. Previous work has put forward techniques for identifying duplicate fragments (clones) that can be refactored into shared subprocesses. However, these techniques are limited to finding exact clones. This paper analyzes the prob- lem of approximate clone detection and puts forward two techniques for detecting clusters of approximate clones. Experiments show that the proposed techniques are able to accurately retrieve clusters of approximate clones that originate from copy/pasting followed by independent modifications to the copied fragments.
Resumo:
This paper is devoted to the analysis of career paths and employability. The state-of-the-art on this topic is rather poor in methodologies. Some authors propose distances well adapted to the data, but are limiting their analysis to hierarchical clustering. Other authors apply sophisticated methods, but only after paying the price of transforming the categorical data into continuous, via a factorial analysis. The latter approach has an important drawback since it makes a linear assumption on the data. We propose a new methodology, inspired from biology and adapted to career paths, combining optimal matching and self-organizing maps. A complete study on real-life data will illustrate our proposal.
Resumo:
Atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality in industrialized societies. The lack of metabolite biomarkers has impeded the clinical diagnosis of atherosclerosis so far. In this study, stable atherosclerosis patients (n=16) and age- and sex-matched non-atherosclerosis healthy subjects (n=28) were recruited from the local community (Harbin, P. R. China). The plasma was collected from each study subject and was subjected to metabolomics analysis by GC/MS. Pattern recognition analyses (principal components analysis, orthogonal partial least-squares discriminate analysis, and hierarchical clustering analysis) commonly demonstrated plasma metabolome, which was significantly different from atherosclerotic and non-atherosclerotic subjects. The development of atherosclerosis-induced metabolic perturbations of fatty acids, such as palmitate, stearate, and 1-monolinoleoylglycerol, was confirmed consistent with previous publication, showing that palmitate significantly contributes to atherosclerosis development via targeting apoptosis and inflammation pathways. Altogether, this study demonstrated that the development of atherosclerosis directly perturbed fatty acid metabolism, especially that of palmitate, which was confirmed as a phenotypic biomarker for clinical diagnosis of atherosclerosis.
Resumo:
Data associated with germplasm collections are typically large and multivariate with a considerable number of descriptors measured on each of many accessions. Pattern analysis methods of clustering and ordination have been identified as techniques for statistically evaluating the available diversity in germplasm data. While used in many studies, the approaches have not dealt explicitly with the computational consequences of large data sets (i.e. greater than 5000 accessions). To consider the application of these techniques to germplasm evaluation data, 11328 accessions of groundnut (Arachis hypogaea L) from the International Research Institute for the Semi-Arid Tropics, Andhra Pradesh, India were examined. Data for nine quantitative descriptors measured in the rainy and post-rainy growing seasons were used. The ordination technique of principal component analysis was used to reduce the dimensionality of the germplasm data. The identification of phenotypically similar groups of accessions within large scale data via the computationally intensive hierarchical clustering techniques was not feasible and non-hierarchical techniques had to be used. Finite mixture models that maximise the likelihood of an accession belonging to a cluster were used to cluster the accessions in this collection. The patterns of response for the different growing seasons were found to be highly correlated. However, in relating the results to passport and other characterisation and evaluation descriptors, the observed patterns did not appear to be related to taxonomy or any other well known characteristics of groundnut.
Resumo:
Samples of Forsythia suspensa from raw (Laoqiao) and ripe (Qingqiao) fruit were analyzed with the use of HPLC-DAD and the EIS-MS techniques. Seventeen peaks were detected, and of these, twelve were identified. Most were related to the glucopyranoside molecular fragment. Samples collected from three geographical areas (Shanxi, Henan and Shandong Provinces), were discriminated with the use of hierarchical clustering analysis (HCA), discriminant analysis (DA), and principal component analysis (PCA) models, but only PCA was able to provide further information about the relationships between objects and loadings; eight peaks were related to the provinces of sample origin. The supervised classification models-K-nearest neighbor (KNN), least squares support vector machines (LS-SVM), and counter propagation artificial neural network (CP-ANN) methods, indicated successful classification but KNN produced 100% classification rate. Thus, the fruit were discriminated on the basis of their places of origin.
Resumo:
Travel speed is one of the most critical parameters for road safety; the evidence suggests that increased vehicle speed is associated with higher crash risk and injury severity. Both naturalistic and simulator studies have reported that drivers distracted by a mobile phone select a lower driving speed. Speed decrements have been argued to be a risk compensatory behaviour of distracted drivers. Nonetheless, the extent and circumstances of the speed change among distracted drivers are still not known very well. As such, the primary objective of this study was to investigate patterns of speed variation in relation to contextual factors and distraction. Using the CARRS-Q high-fidelity Advanced Driving Simulator, the speed selection behaviour of 32 drivers aged 18-26 years was examined in two phone conditions: baseline (no phone conversation) and handheld phone operation. The simulator driving route contained five different types of road traffic complexities, including one road section with a horizontal S curve, one horizontal S curve with adjacent traffic, one straight segment of suburban road without traffic, one straight segment of suburban road with traffic interactions, and one road segment in a city environment. Speed deviations from the posted speed limit were analysed using Ward’s Hierarchical Clustering method to identify the effects of road traffic environment and cognitive distraction. The speed deviations along curved road sections formed two different clusters for the two phone conditions, implying that distracted drivers adopt a different strategy for selecting driving speed in a complex driving situation. In particular, distracted drivers selected a lower speed while driving along a horizontal curve. The speed deviation along the city road segment and other straight road segments grouped into a different cluster, and the deviations were not significantly different across phone conditions, suggesting a negligible effect of distraction on speed selection along these road sections. Future research should focus on developing a risk compensation model to explain the relationship between road traffic complexity and distraction.
Resumo:
In this thesis we present and evaluate two pattern matching based methods for answer extraction in textual question answering systems. A textual question answering system is a system that seeks answers to natural language questions from unstructured text. Textual question answering systems are an important research problem because as the amount of natural language text in digital format grows all the time, the need for novel methods for pinpointing important knowledge from the vast textual databases becomes more and more urgent. We concentrate on developing methods for the automatic creation of answer extraction patterns. A new type of extraction pattern is developed also. The pattern matching based approach chosen is interesting because of its language and application independence. The answer extraction methods are developed in the framework of our own question answering system. Publicly available datasets in English are used as training and evaluation data for the methods. The techniques developed are based on the well known methods of sequence alignment and hierarchical clustering. The similarity metric used is based on edit distance. The main conclusions of the research are that answer extraction patterns consisting of the most important words of the question and of the following information extracted from the answer context: plain words, part-of-speech tags, punctuation marks and capitalization patterns, can be used in the answer extraction module of a question answering system. This type of patterns and the two new methods for generating answer extraction patterns provide average results when compared to those produced by other systems using the same dataset. However, most answer extraction methods in the question answering systems tested with the same dataset are both hand crafted and based on a system-specific and fine-grained question classification. The the new methods developed in this thesis require no manual creation of answer extraction patterns. As a source of knowledge, they require a dataset of sample questions and answers, as well as a set of text documents that contain answers to most of the questions. The question classification used in the training data is a standard one and provided already in the publicly available data.
Resumo:
This thesis studies human gene expression space using high throughput gene expression data from DNA microarrays. In molecular biology, high throughput techniques allow numerical measurements of expression of tens of thousands of genes simultaneously. In a single study, this data is traditionally obtained from a limited number of sample types with a small number of replicates. For organism-wide analysis, this data has been largely unavailable and the global structure of human transcriptome has remained unknown. This thesis introduces a human transcriptome map of different biological entities and analysis of its general structure. The map is constructed from gene expression data from the two largest public microarray data repositories, GEO and ArrayExpress. The creation of this map contributed to the development of ArrayExpress by identifying and retrofitting the previously unusable and missing data and by improving the access to its data. It also contributed to creation of several new tools for microarray data manipulation and establishment of data exchange between GEO and ArrayExpress. The data integration for the global map required creation of a new large ontology of human cell types, disease states, organism parts and cell lines. The ontology was used in a new text mining and decision tree based method for automatic conversion of human readable free text microarray data annotations into categorised format. The data comparability and minimisation of the systematic measurement errors that are characteristic to each lab- oratory in this large cross-laboratories integrated dataset, was ensured by computation of a range of microarray data quality metrics and exclusion of incomparable data. The structure of a global map of human gene expression was then explored by principal component analysis and hierarchical clustering using heuristics and help from another purpose built sample ontology. A preface and motivation to the construction and analysis of a global map of human gene expression is given by analysis of two microarray datasets of human malignant melanoma. The analysis of these sets incorporate indirect comparison of statistical methods for finding differentially expressed genes and point to the need to study gene expression on a global level.
Resumo:
Objectives In China, “serious road traffic crashes” (SRTCs) are those in which there are 10-30 fatalities, 50-100 serious injuries or a total cost of 50-100 million RMB ($US8-16m), and “particularly serious road traffic crashes” (PSRTCs) are those which are more severe or costly. Due to the large number of fatalities and injuries as well as the negative public reaction they elicit, SRTCs and PSRTCs have become great concerns to China during recent years. The aim of this study is to identify the main factors contributing to these road traffic crashes and to propose preventive measures to reduce their number. Methods 49 contributing factors of the SRTCs and PSRTCs that occurred from 2007 to 2013 were collected from the database “In-depth Investigation and Analysis System for Major Road traffic crashes” (IIASMRTC) and were analyzed through the integrated use of principal component analysis and hierarchical clustering to determine the primary and secondary groups of contributing factors. Results Speeding and overloading of passengers were the primary contributing factors, featuring in up to 66.3% and 32.6% of accidents respectively. Two secondary contributing factors were road-related: lack of or nonstandard roadside safety infrastructure, and slippery roads due to rain, snow or ice. Conclusions The current approach to SRTCs and PSRTCs is focused on the attribution of responsibility and the enforcement of regulations considered relevant to particular SRTCs and PSRTCs. It would be more effective to investigate contributing factors and characteristics of SRTCs and PSRTCs as a whole, to provide adequate information for safety interventions in regions where SRTCs and PSRTCs are more common. In addition to mandating of a driver training program and publicisation of the hazards associated with traffic violations, implementation of speed cameras, speed signs, markings and vehicle-mounted GPS are suggested to reduce speeding of passenger vehicles, while increasing regular checks by traffic police and passenger station staff, and improving transportation management to increase income of contractors and drivers are feasible measures to prevent overloading of people. Other promising measures include regular inspection of roadside safety infrastructure, and improving skid resistance on dangerous road sections in mountainous areas.
Resumo:
Core Vector Machine(CVM) is suitable for efficient large-scale pattern classification. In this paper, a method for improving the performance of CVM with Gaussian kernel function irrespective of the orderings of patterns belonging to different classes within the data set is proposed. This method employs a selective sampling based training of CVM using a novel kernel based scalable hierarchical clustering algorithm. Empirical studies made on synthetic and real world data sets show that the proposed strategy performs well on large data sets.
Resumo:
The presence of a large number of spectral bands in the hyperspectral images increases the capability to distinguish between various physical structures. However, they suffer from the high dimensionality of the data. Hence, the processing of hyperspectral images is applied in two stages: dimensionality reduction and unsupervised classification techniques. The high dimensionality of the data has been reduced with the help of Principal Component Analysis (PCA). The selected dimensions are classified using Niche Hierarchical Artificial Immune System (NHAIS). The NHAIS combines the splitting method to search for the optimal cluster centers using niching procedure and the merging method is used to group the data points based on majority voting. Results are presented for two hyperspectral images namely EO-1 Hyperion image and Indian pines image. A performance comparison of this proposed hierarchical clustering algorithm with the earlier three unsupervised algorithms is presented. From the results obtained, we deduce that the NHAIS is efficient.