926 resultados para hidrates of natural gas


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The U.S. natural gas industry has changed because of the recent ability to produce natural gas from unconventional shale deposits. One of the largest and most important deposits is the Marcellus Shale. Hydraulic fracturing and horizontal drilling have allowed for the technical feasibility of production, but concerns exist regarding the economics of shale gas production. These concerns are related to limited production and economic data for shale gas wells, declines in the rates of production, falling natural gas prices, oversupply issues coupled with slow growth in U.S. natural gas demand, and rising production costs. An attempt to determine profitability was done through the economic analysis of an average shale gas well using data that is representative of natural gas production from 2009 to 2011 in the Marcellus Shale. Despite the adverse conditions facing the shale gas industry it is concluded from the results of this analysis that a shale gas well in the Marcellus Shale is profitable based on NPV, IRR and breakeven price calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A experiência do mundo desenvolvido mostra que o crescimento econômico de um país sempre requer uma grande disponibilidade de capacidade de produção própria de energia, a preços de mercado competitivos e atraentes. A estabilidade de relações comerciais, definidas por uma regulação transparente e objetiva, adiversidade de fontes supridoras e a existência de políticas de governo que incentivemo desenvolvimento sustentável do mercado consumidor são requisitos imprescindíveis à captação de novos investidores para o setor energético. Não obstante o incremento recente do percentual de gás natural na matriz energética nacional e a perspectiva mundial de aumento do uso deste combustível, alguns desafios ainda se interpõem ao efetivo crescimento da participação do gás natural no mercado energético nacional. Itens críticos para a expansão do uso do gás natural no Brasil, tais como a realização de grandes investimentos em infraestrutura de produção, transporte e distribuição, a exploração das principais reservas de hidrocarbonetos, a redução das incertezas com relação à evolução da demanda por gás no mercado industrial e termelétrico, aliados aos grandes desafios tecnológicos para produção do pré-sal brasileiro geram grandes riscos ao retorno de investimentos no setor, causando postergações ao desenvolvimento de novas áreas de produção e à expansão da demanda de gás. O objetivo deste trabalho é apresentar uma visão ampla do mercado brasileiro de gás natural, baseada emcenários possíveis e desafios futuros à expansão da utilização do gás no país, desenvolvidos a partir da análise de levantamento de dados de produção e consumo e do atual estágio da evolução da indústria gasífera brasileira. Este trabalho apresenta também um conjunto de proposições como objetivo de mitigar as dificuldades citadas e alavancar o desenvolvimento do mercado de gás no Brasi

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An industrial scale dehydration process based on hollow fiber membranes for lowering the dew point of natural gas is described in this paper. A pilot test with the feed flux scale of 12x10(4) Nm(3)/d was carried out. Dew points of -8 degreesC-13 degreesC at a gas transport pressure in the pipeline of 4.6M Pa and methane recovery of more than 98% were attained. The water vapor content of the product gas could be maintained around 0.01 vol% during a continuous run of about 700 hours. The effects of feed flux and operation pressure on methane recovery and water vapor content were also investigated. Additionally, some auxiliary technologies, such as a full-time engine using natural gas as fuel and the utilization of vent gas in the process, are also discussed. A small amount of the vent gas from the system was used as a fuel for an engine to drive vacuum pumps, and the heat expelled from the engine was used to warm up the natural gas feed. The whole system can be operated in a self-sustainable manner from an energy point of view, and has a relatively high efficiency in the utilization of natural gas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in technologies for extracting oil and gas from shale formations have dramatically increased U.S. production of natural gas. As production expands domestically and abroad, natural gas prices will be lower than without shale gas. Lower prices have two main effects: increasing overall energy consumption, and encouraging substitution away from sources such as coal, nuclear, renewables, and electricity. We examine the evidence and analyze modeling projections to understand how these two dynamics affect greenhouse gas emissions. Most evidence indicates that natural gas as a substitute for coal in electricity production, gasoline in transport, and electricity in buildings decreases greenhouse gases, although as an electricity substitute this depends on the electricity mix displaced. Modeling suggests that absent substantial policy changes, increased natural gas production slightly increases overall energy use, more substantially encourages fuel-switching, and that the combined effect slightly alters economy wide GHG emissions; whether the net effect is a slight decrease or increase depends on modeling assumptions including upstream methane emissions. Our main conclusions are that natural gas can help reduce GHG emissions, but in the absence of targeted climate policy measures, it will not substantially change the course of global GHG concentrations. Abundant natural gas can, however, help reduce the costs of achieving GHG reduction goals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study the optimal natural gas commitment for a known demand scenario. This study implies the best location of GSUs to supply all demands and the optimal allocation from sources to gas loads, through an appropriate transportation mode, in order to minimize total system costs. Our emphasis is on the formulation and use of a suitable optimization model, reflecting real-world operations and the constraints of natural gas systems. The mathematical model is based on a Lagrangean heuristic, using the Lagrangean relaxation, an efficient approach to solve the problem. Computational results are presented for Iberian and American natural gas systems, geographically organized in 65 and 88 load nodes, respectively. The location model results, supported by the computational application GasView, show the optimal location and allocation solution, system total costs and suggest a suitable gas transportation mode, presented in both numerical and graphic supports.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a comparative analysis of the environmental impact caused by the use of natural gas and diesel in thermoelectric power plants utilizing combined cycle is performed. The objective is to apply a thermoeconomical analysis in order to compare the two proposed fuels. In this analysis, a new methodology that incorporates the economical engineering concept to the ecological efficiency once Cardu and Baica [1, 2], which evaluates, in general terms, the environmental impacts caused by CO2, SO2, NOx and Particulate Matter (PM), adopting as reference the air quality standards in vigour is employed. The thermoeconomic model herein proposed utilizes functional diagrams that allow the minimization the Exergetic Manufacturing Cost, which represents the cost of production of electricity incorporating the environmental impact effects to study the performance of the thermoelectric power plant [3,4], It follows that it is possible to determine the environmental impact caused by thermoelectric power plants and, under the ecological standpoint, the use of natural gas as a fuel is the best option compared to the use of the diesel, presenting ecological efficiency values of 0.944 and 0.914 respectively. From the Exergoeconomic point of view of, it was found out that the EMC (Exergetic Manufacturing Cost) is better when natural gas is used as fuel compared to the diesel fuel. Copyright © 2006 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study estimates the economic effects of a severance tax on the market for natural gas produced from shale sources using non-conventional extraction methods, such as horizontal drilling and fracking. Results suggest that a severance tax of 5% would increase the price of natural gas by as much as 3.82% and decrease gas extraction by an estimated 1.16% to a value of 9.52%. If applied to the Commonwealth of Pennsylvania in the United States, a 5% severance tax is estimated to raise between US$443 and $486 million per year in public revenue. The marginal deadweight loss associated with a 5% severance tax is estimated between 1.27% and 12.85% of the last dollar earned. The burden of this tax falls on both producers and consumers and depends upon the underlying assumptions made regarding the price responsiveness of consumers and producers. Under plausible assumptions, a family consuming 1000 MMcfs (approximate to 2.8 x 10(4) m(3)) per year of natural gas is estimated to pay an additional $100 per year after the implementation of a 5% severance tax.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis analyzes the domestic shortage in the Chinese natural gas market. Both the domestic supply and demand of natural gas are growing fast in China. However, the supply cannot catch up with the demand. Under the present pricing mechanism, the Chinese natural gas market cannot get the equilibrium by itself. Expensive imports are inadequate to fill the increasing gap between the domestic demand and supply. Therefore, the shortage problem occurs. Since the energy gap can result in the arrested development of economics, the shortage problem need to be solved. This thesis gives three suggestions to solve the problem: the use of Unconventional Gas, Natural Gas Storage and Pricing Reform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is substantial empirical evidence that energy and financial markets are closely connected. As one of the most widely-used energy resources worldwide, natural gas has a large daily trading volume. In order to hedge the risk of natural gas spot markets, a large number of hedging strategies can be used, especially with the rapid development of natural gas derivatives markets. These hedging instruments include natural gas futures and options, as well as Exchange Traded Fund (ETF) prices that are related to natural gas stock prices. The volatility spillover effect is the delayed effect of a returns shock in one physical, biological or financial asset on the subsequent volatility or co-volatility of another physical, biological or financial asset. Investigating volatility spillovers within and across energy and financial markets is a crucial aspect of constructing optimal dynamic hedging strategies. The paper tests and calculates spillover effects among natural gas spot, futures and ETF markets using the multivariate conditional volatility diagonal BEKK model. The data used include natural gas spot and futures returns data from two major international natural gas derivatives markets, namely NYMEX (USA) and ICE (UK), as well as ETF data of natural gas companies from the stock markets in the USA and UK. The empirical results show that there are significant spillover effects in natural gas spot, futures and ETF markets for both USA and UK. Such a result suggests that both natural gas futures and ETF products within and beyond the country might be considered when constructing optimal dynamic hedging strategies for natural gas spot prices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energy security of countries importing energy resources depends largely on the shape and quality of operational transport connections. This is particularly important in the case of natural gas supplies. Natural gas is transported mostly by gas pipelines which permanently connect gas producers and consumers. Thus Europe as a consumer is "tied" to certain gas suppliers for anywhere between a dozen and several tens of years. As their own resources are becoming depleted, the EU Member States get increasingly dependent on import of natural gas. The present paper discusses the existing and projected gas transport routes from Russia to the EU. The first part deals with the importance of gas exports to the economy of the Russian Federation, and the second delves into the EU Member States' dependence on gas imports. Then this paper examines the differences in perceiving the energy security issue between the old and the new Member States, those differences stemming from the different degrees of their dependence on Russian supplies. In the third part, two new transport route projects for Russian gas supplies to the EU are compared and it is argued that from the point of view of the Community's interests, the Yamal gas pipeline is a better solution than the North European (Trans-Baltic) gas pipeline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compressed natural gas (CNG) engines are thought to be less harmful to the environment than conventional diesel engines, especially in terms of particle emissions. Although, this is true with respect to particulate matter (PM) emissions, results of particle number (PN) emission comparisons have been inconclusive. In this study, results of on-road and dynamometer studies of buses were used to derive several important conclusions. We show that, although PN emissions from CNG buses are significantly lower than from diesel buses at low engine power, they become comparable at high power. For diesel buses, PN emissions are not significantly different between acceleration and operation at steady maximum power. However, the corresponding PN emissions from CNG buses when accelerating are an order of magnitude greater than when operating at steady maximum power. During acceleration under heavy load, PN emissions from CNG buses are an order of magnitude higher than from diesel buses. The particles emitted from CNG buses are too small to contribute to PM10 emissions or contribute to a reduction of visibility, and may consist of semivolatile nanoparticles.