363 resultados para herbivores
Resumo:
* Although plants can reduce the impacts of herbivory in multiple ways, these defensive traits are often studied in isolation and an understanding of the resulting strategies is incomplete. * In the study reported here, empirical evidence was simultaneously evaluated for the three main sets of traits available to plants: (i) resistance through constitutive leaf traits, (ii) tolerance to defoliation and (iii) escape in space, for three caesalpiniaceous tree species Microberlinia bisulcata, Tetraberlinia bifoliolata and T. korupensis, which co-dominate groves within the lowland primary rain forest of Korup National Park (Cameroon). * Mesh cages were placed around individual wild seedlings to exclude insect herbivores at 41 paired canopy gap and understorey locations. After following seedling growth and survival for c. 2 years, caged and control treatments were removed, leaves harvested to determine nutrient and phenolic concentrations, leaf mass per area estimated, and seedling performance in gaps followed for a further c. 2 years to quantify tolerance to the leaf harvesting. * The more nutrient-rich leaves of the weakly shade-tolerant M. bisulcata were damaged much more in gaps than the two strongly shade-tolerant Tetraberlinia species, which had higher leaf mass per area and concentrations of total phenols. Conversely, the faster-growing M. bisulcata was better able to tolerate defoliation in terms of height growth (reflushing capacity), but not at maintaining overall leaf numbers, than the other two species. * Across gaps, insect-mediated Janzen–Connell effects were most pronounced for M. bisulcata, less so for T. korupensis, and not detectable for T. bifoliolata. The three species differed distinctly in their secondary metabolic profiles. * Taken together, the results suggested a conceptual framework linking the three sets of traits, one in which the three co-dominant species adopt different strategies towards herbivore pressure depending on their different responses to light availability. This study is one of the first in a natural forest ecosystem to examine resistance to, tolerance of, and escape from herbivory among a group of co-occurring tropical tree species.
Resumo:
Enemy release is frequently posed as a main driver of invasiveness of alien species. However, an experimental multi-species test examining performance and herbivory of invasive alien, non-invasive alien and native plant species in the presence and absence of natural enemies is lacking. In a common garden experiment in Switzerland, we manipulated exposure of seven alien invasive, eight alien non-invasive and fourteen native species from six taxonomic groups to natural enemies (invertebrate herbivores), by applying a pesticide treatment under two different nutrient levels. We assessed biomass production, herbivore damage and the major herbivore taxa on plants. Across all species, plants gained significantly greater biomass under pesticide treatment. However, invasive, non-invasive and native species did not differ in their biomass response to pesticide treatment at either nutrient level. The proportion of leaves damaged on invasive species was significantly lower compared to native species, but not when compared to non-invasive species. However, the difference was lost when plant size was accounted for. There were no differences between invasive, non-invasive and native species in herbivore abundance. Our study offers little support for invertebrate herbivore release as a driver of plant invasiveness, but suggests that future enemy release studies should account for differences in plant size among species.
Resumo:
Although slugs and snails play important roles in terrestrial ecosystems and cause considerable damage on a variety of crop plants, knowledge about the mechanisms of plant immunity to molluscs is limited. We found slugs to be natural herbivores of Arabidopsis thaliana and therefore investigated possible resistance mechanisms of this species against several molluscan herbivores. Treating wounded leaves with the mucus residue (‘slime trail’) of the Spanish slug Arion lusitanicus increased wound-induced jasmonate levels, suggesting the presence of defence elicitors in the mucus. Plants deficient in jasmonate biosynthesis and signalling suffered more damage by molluscan herbivores in the laboratory and in the field, demonstrating that JA-mediated defences protect A. thaliana against slugs and snails. Furthermore, experiments using A. thaliana mutants with altered levels of specific glucosinolate classes revealed the importance of aliphatic glucosinolates in defending leaves and reproductive structures against molluscs. The presence in mollusc faeces of known and novel metabolites arising from glutathione conjugation with glucosinolate hydrolysis products suggests that molluscan herbivores actively detoxify glucosinolates. Higher levels of aliphatic glucosinolates were found in plants during the night compared to the day, which correlated well with the nocturnal activity rhythms of slugs and snails. Our data highlight the function of well-known antiherbivore defence pathways in resistance against slugs and snails and suggest an important role for the diurnal regulation of defence metabolites against nocturnal molluscan herbivores.
Resumo:
Benzoxazinoids are chemical defenses against herbivores and are produced by many members of the grass family. These compounds are stored as stable glucosides in plant cells and require the activity of glucosidases to release the corresponding toxic aglucones. In maize leaves, the most abundant benzoxazinoid is (2R)-DIMBOA-Glc, which is converted into the toxic DIMBOA upon herbivory. The ways in which three Spodoptera species metabolize this toxin were investigated. (2S)-DIMBOA-Glc, an epimer of the initial plant compound, was observed in the insect frass, and the associated glucosyltransferase activity was detected in the insect gut tissue. The epimeric glucoside produced by the insect was found to be no longer reactive towards plant glucosidases and thus cannot be converted into a toxin. Stereoselective reglucosylation thus represents a detoxification strategy in Spodoptera species that might help to explain their success as agricultural pests on benzoxazinoid-containing crops.
Resumo:
Root herbivores are important ecosystem drivers and agricultural pests, and, possibly as a consequence, plants protect their roots using a variety of defensive strategies. One aspect that distinguishes belowground from aboveground plant–insect interactions is that roots are constantly exposed to a set of soil-specific abiotic factors. These factors can profoundly influence root resistance, and, consequently, the outcome of the interaction with belowground feeders. In this review, we synthesize the current literature on the impact of soil moisture, nutrients, and texture on root–herbivore interactions. We show that soil abiotic factors influence the interaction by modulating herbivore abundance and behaviour, root growth and resistance, beneficial microorganisms, as well as natural enemies of the herbivores. We suggest that abiotic heterogeneity may explain the high variability that is often encountered in root–herbivore systems. We also propose that under abiotic stress, the relative fitness value of the roots and the potential negative impact of herbivory increases, which may lead to a higher defensive investment and an increased recruitment of beneficial microorganisms by the plant. At the same time, both root-feeding herbivores and natural enemies are likely to decrease in abundance under extreme environmental conditions, leading to a context- and species-specific impact on plant fitness. Only by using tightly controlled experiments that include soil abiotic heterogeneity will it be possible to understand the impact of root feeders on an ecosystem scale and to develop predictive models for pest occurrence and impact.
Resumo:
Roots respond dynamically to belowground herbivore attack. Yet, little is known about the mechanisms and ecological consequences of these responses. Do roots behave the same way as leaves, or do the paradigms derived from aboveground research need to be rewritten? This is the central question that we tackle in this article. To this end, we review the current literature on induced root defenses and present a number of experiments on the interaction between the root herbivore Diabrotica virgifera and its natural host, maize. Currently, the literature provides no clear evidence that plants can recognize root herbivores specifically. In maize, mild mechanical damage is sufficient to trigger a root volatile response comparable to D. virgifera induction. Interestingly, the jasmonate (JA) burst, a highly conserved signaling event following leaf attack, is consistently attenuated in the roots across plant species, from wild tobacco to Arabidopsis. In accordance, we found only a weak JA response in D. virgifera attacked maize roots. Despite this reduction in JA-signaling, roots of many plants start producing a distinct suite of secondary metabolites upon attack and reconfigure their primary metabolism. We, therefore, postulate the existence of additional, unknown signals that govern induced root responses in the absence of a jasmonate burst. Surprisingly, despite the high phenotypic plasticity of plant roots, evidence for herbivore-induced resistance below ground is virtually absent from the literature. We propose that other defensive mechanisms, including resource reallocation and compensatory growth, may be more important to improve plant immunity below ground.
Resumo:
In monocotyledonous plants, 1,4-benzoxazin-3-ones, also referred to as benzoxazinoids or hydroxamic acids, are one of the most important chemical barriers against herbivores. However, knowledge about their behavior after attack, mode of action and potential detoxification by specialized insects remains limited. We chose an innovative analytical approach to understand the role of maize 1,4-benzoxazin-3-ones in plant–insect interactions. By combining unbiased metabolomics screening and simultaneous measurements of living and digested plant tissue, we created a quantitative dynamic map of 1,4-benzoxazin-3-ones at the plant–insect interface. Hypotheses derived from this map were tested by specifically developed in vitro assays using purified 1,4-benzoxazin-3-ones and active extracts from mutant plants lacking 1,4-benzoxazin-3-ones. Our data show that maize plants possess a two-step defensive system that effectively fends off both the generalist Spodoptera littoralis and the specialist Spodoptera frugiperda. In the first step, upon insect attack, large quantities of 2-β-d-glucopyranosyloxy-4,7-dimethoxy-1,4-benzoxazin-3-one (HDMBOA-Glc) are formed. In the second step, after tissue disruption by the herbivores, highly unstable 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one (HDMBOA) is released by plant-derived β-glucosidases. HDMBOA acts as a strong deterrent to both S. littoralis and S. frugiperda. Although constitutively produced 1,4-benzoxazin-3-ones such as 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) are detoxified via glycosylation by the insects, no conjugation of HDMBOA in the insect gut was found, which may explain why even the specialist S. frugiperda has not evolved immunity against this plant defense. Taken together, our results show the benefit of using a plant–insect interface approach to elucidate plant defensive processes and unravel a potent resistance mechanism in maize.
Resumo:
Plants generally respond to herbivore attack by increasing resistance and decreasing growth. This prioritization is achieved through the regulation of phytohormonal signaling networks. However, it remains unknown how this prioritization affects resistance against non-target herbivores. In this study, we identify WRKY70 as a specific herbivore-induced, mitogen-activated protein kinase-regulated rice transcription factor that physically interacts with W-box motifs and prioritizes defence over growth by positively regulating jasmonic acid (JA) and negatively regulating gibberellin (GA) biosynthesis upon attack by the chewing herbivore Chilo suppressalis. WRKY70-dependent JA biosynthesis is required for proteinase inhibitor activation and resistance against C. suppressalis. In contrast, WRKY70 induction increases plant susceptibility against the rice brown planthopper Nilaparvata lugens. Experiments with GA-deficient rice lines identify WRKY70-dependent GA signaling as the causal factor in N. lugens susceptibility. Our study shows that prioritizing defence over growth leads to a significant resistance trade-off with important implications for the evolution and agricultural exploitation of plant immunity.
Resumo:
The jasmonic acid (JA) pathway plays a central role in plant defense responses against insects. Some phloem-feeding insects also induce the salicylic acid (SA) pathway, thereby suppressing the plant’s JA response. These phenomena have been well studied in dicotyledonous plants, but little is known about them in monocotyledons. We cloned a chloroplast-localized type 2 13-lipoxygenase gene of rice, OsHI-LOX, whose transcripts were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis and the rice brown planthopper (BPH) Niaparvata lugens, as well as by mechanical wounding and treatment with JA. Antisense expression of OsHI-LOX (as-lox) reduced SSB- or BPH-induced JA and trypsin protease inhibitor (TrypPI) levels, improved the larval performance of SBB as well as that of the rice leaf folder (LF) Cnaphalocrocis medinalis, and increased the damage caused by SSB and LF larvae. In contrast, BPH, a phloem-feeding herbivore, showed a preference for settling and ovipositing on WT plants, on which they consumed more and survived better than on as-lox plants. The enhanced resistance of as-lox plants to BPH infestation correlated with higher levels of BPH-induced H2O2 and SA, as well as with increased hypersensitive response-like cell death. These results imply that OsHI-LOX is involved in herbivore-induced JA biosynthesis, and plays contrasting roles in controlling rice resistance to chewing and phloem-feeding herbivores. The observation that suppression of JA activity results in increased resistance to an insect indicates that revision of the generalized plant defense models in monocotyledons is required, and may help develop novel strategies to protect rice against insect pests.
Resumo:
Numerous insect herbivores can take up and store plant toxins as self-defense against their own natural enemies. Plant toxin sequestration is tightly linked with tolerance strategies that keep the toxins functional. Specific transporters have been identified that likely allow the herbivore to control the spatiotemporal dynamics of toxin accumulation. Certain herbivores furthermore possess specific enzymes to boost the bioactivity of the sequestered toxins. Ecologists have studied plant toxin sequestration for decades. The recently uncovered molecular mechanisms in combination with transient, non-transgenic systems to manipulate insect gene expression will help to understand the importance of toxin sequestration for food-web dynamics in nature.
Resumo:
Plant‐mediated interactions between herbivores are important determinants of community structure and plant performance in natural and agricultural systems. Current research suggests that the outcome of the interactions is determined by herbivore and plant identity, which may result in stochastic patterns that impede adaptive evolution and agricultural exploitation. However, few studies have systemically investigated specificity versus general patterns in a given plant system by varying the identity of all involved players. We investigated the influence of herbivore identity and plant genotype on the interaction between leaf‐chewing and root‐feeding herbivores in maize using a partial factorial design. We assessed the influence of leaf induction by oral secretions of six different chewing herbivores on the response of nine different maize genotypes and three different root feeders. Contrary to our expectations, we found a highly conserved pattern across all three dimensions of specificity: The majority of leaf herbivores elicited a negative behavioral response from the different root feeders in the large majority of tested plant genotypes. No facilitation was observed in any of the treatment combinations. However, the oral secretions of one leaf feeder and the responses of two maize genotypes did not elicit a response from a root‐feeding herbivore. Together, these results suggest that plant‐mediated interactions in the investigated system follow a general pattern, but that a degree of specificity is nevertheless present. Our study shows that within a given plant species, plant‐mediated interactions between herbivores of the same feeding guild can be stable. This stability opens up the possibility of adaptations by associated organisms and suggests that plant‐mediated interactions may contribute more strongly to evolutionary dynamics in terrestrial (agro)ecosystems than previously assumed.
Resumo:
Endozoochory is an important dispersal mechanism for seed plants and has recently been demonstrated to occur also in spore plants, such as ferns, which are commonly consumed by herbivores. However, it is not known whether fern species from particular habitats are differentially preferred by herbivores and whether their spores differ in their ability to survive the gut passage of herbivores. Such differences would suggest adaptation to endozoochorous dispersal, as it is known for seed plants. Moreover, it is unclear whether herbivore species differ in their efficiency to disperse fern spores. In a factorial experiment, we fed fertile leaflets of 13 fern species from different forest and open habitats to three polyphagous herbivore species and recorded the germination of spores from feces after 46 and 81 days. Fern spores germinated in 66 % of all samples after 46 days. At this stage, germination success differed among fern and herbivore species, but was independent of the ferns’ habitat. Interestingly, after 81 days fern spores germinated in 85 % of all samples and earlier significant differences in germination success among fern and herbivore species were not sustained. The overall high germination success and the absence of differences among fern species from different habitats together with the consistency across three tested herbivores strongly imply endozoochorous dispersal to be a taxonomically widespread phenomenon among fern-eating herbivores, which all might act as potential dispersal vectors. © 2015, Springer Science+Business Media Dordrecht.
Resumo:
The Janzen–Connell hypothesis proposes that specialized herbivores maintain high numbers of tree species in tropical forests by restricting adult recruitment so that host populations remain at low densities. We tested this prediction for the large timber tree species, Swietenia macrophylla, whose seeds and seedlings are preyed upon by small mammals and a host-specific moth caterpillar Steniscadia poliophaea, respectively. At a primary forest site, experimental seed additions to gaps – canopy-disturbed areas that enhance seedling growth into saplings – over three years revealed lower survival and seedling recruitment closer to conspecific trees and in higher basal area neighborhoods, as well as reduced subsequent seedling survival and height growth. When we included these Janzen–Connell effects in a spatially explicit individual-based population model, the caterpillar's impact was critical to limiting Swietenia's adult tree density, with a > 10-fold reduction estimated at 300 years. Our research demonstrates the crucial but oft-ignored linkage between Janzen–Connell effects on offspring and population-level consequences for a long-lived, potentially dominant tree species.
Resumo:
Peer reviewed
Resumo:
Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto-and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground), the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness). We found a lower R-2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their natural enemies, whether they are endophagous or ectophagous or associated with leaves or fruits.