907 resultados para hematopoietic stem cells
Resumo:
Ultraviolet B (UVB) light is known to be immunosuppressive, but, probably because of a small UVC component in the emission spectra of some of the UVB lamps used, reports vary on effective dose levels. To prevent potentially lethal graft-versus-host disease (GVHD) after allogeneic bone marrow transplantation, alloreactive donor T-cell activity must be suppressed. In this study, a narrow wavelength UVB lamp (TL01, 312 nm peak emission) was used to determine what doses of UVB were required to abolish rat lymphocyte proliferation while simultaneously preserving rat bone marrow progenitor cell and primitive hematopoietic stem cell viability. Lymphocyte proliferation, as measured by 3H-Thymidine incorporation, in response to lectin stimulation was abolished below detection at doses greater than 3,500 J/m2. When T-cell clonogenicity was measured in a limiting dilution assay, a small fraction (0.6%) was maintained at doses up to 4,000 J/m2. Cytotoxic T-lymphocyte (CTL) activity was reduced after treatment with 4,000 J/m2, but a significant level of cytotoxicity was still maintained. Natural killer cell cytolytic activity was not affected by doses up to 4,000 J/m2. At 4,000 J+m2 there was a 10% survival of colony-forming units-granulocyte-macrophage; a 1% and 4% survival of day-8 and day-12 colony-forming units-spleen, respectively; and 11% survival of marrow repopulating ability cells. Up to 25% of late cobblestone area forming cells (4 to 5 weeks), reflecting the more immature hematopoietic stem cells, were preserved in bone marrow treated with 4,000 J/m2, indicating that early stem cells are less sensitive to UVB damage than are more committed progenitor cells. Thus, a potential therapeutic window was established at approximately 4,000 J/m2 using this light source, whereby the potentially GVHD-inducing T cells were suppressed, but a sufficient proportion of the cells responsible for engraftment was maintained.
Resumo:
Myc activity is emerging as a key element in acquisition and maintenance of stem cell properties. We have previously shown that c-Myc deficiency results in accumulation of defective hematopoietic stem cells (HSCs) due to niche-dependent differentiation defects. Here we report that immature HSCs coexpress c-myc and N-myc mRNA at similar levels. Although conditional deletion of N-myc in the bone marrow does not affect hematopoiesis, combined deficiency of c-Myc and N-Myc (dKO) results in pancytopenia and rapid lethality. Interestingly, proliferation of HSCs depends on both myc genes during homeostasis, but is c-Myc/N-Myc independent during bone marrow repair after injury. Strikingly, while most dKO hematopoietic cells undergo apoptosis, only self-renewing HSCs accumulate the cytotoxic molecule Granzyme B, normally employed by the innate immune system, thereby revealing an unexpected mechanism of stem cell apoptosis. Collectively, Myc activity (c-Myc and N-Myc) controls crucial aspects of HSC function including proliferation, differentiation, and survival.
Resumo:
Adult or somatic stem cells are tissue-resident cells with the ability to proliferate, exhibit self-maintenance as well as to generate new cells with the principal phenotypes of the tissue in response to injury or disease. Due to their easy accessibility and their potential use in regenerative medicine, adult stem cells raise the hope for future personalisable therapies. After infection or during injury, they are exposed to broad range of pathogen or damage-associated molecules leading to changes in their proliferation, migration and differentiation. The sensing of such damage and infection signals is mostly achieved by Toll-Like Receptors (TLRs) with Toll-like receptor 4 being responsible for recognition of bacterial lipopolysaccharides (LPS) and endogenous danger-associated molecular patterns (DAMPs). In this review, we examine the current state of knowledge on the TLR4-mediated signalling in different adult stem cell populations. Specifically, we elaborate on the role of TLR4 and its ligands on proliferation, differentiation and migration of mesenchymal stem cells, hematopoietic stem cells as well as neural stem cells. Finally, we discuss conceptual and technical pitfalls in investigation of TLR4 signalling in stem cells.
Resumo:
Autologous hematopoietic stem cell transplantation is a conduct used to treat some hematologic diseases and to consolidate the treatment of others. In the field of nursing, the few published scientific studies on nursing care and early hospital discharge of transplant patients are deficient. Knowledge about the diseases treated using hematopoietic stem cell transplantation, providing guidance to patients and caregivers and patient monitoring are important nursing activities in this process. Guidance may contribute to long-term goals through patients' short-term needs. To analyze the results of early hospital discharge on the treatment of patients submitted to autologous transplantation and the influence of nursing care on this conduct. A retrospective, quantitative, descriptive and transversal study was conducted. The hospital records of 112 consecutive patients submitted to autologous transplantation in the period from January to December 2009 were revisited. Of these, 12 patients, who remained in hospital for more than ten days after transplantation, were excluded from the study. The medical records of 100 patients with a median age of 48.5 years (19-69 years) were analyzed. All patients were mobilized and hematopoietic stem cells were collected by leukapheresis. The most common conditioning regimes were BU12Mel100 and BEAM 400. Toxicity during conditioning was easily managed in the outpatient clinic. Gastrointestinal toxicity, mostly Grades I and II, was seen in 69% of the patients, 62% of patients had diarrhea, 61% of the patients had nausea and vomiting and 58% had Grade I and II mucositis. Ten patients required hospitalization due to the conditioning regimen. Febrile neutropenia was seen in 58% of patients. Two patients died before Day +60 due to infections, one with aplasia. The median times to granulocyte and platelet engraftment were 12 days and 15 days, respectively, with median red blood cell and platelet transfusions until discharge of three and four units, respectively. Twenty-three patients required rehospitalization before being discharged from the outpatient clinic. The median time to granulocyte engraftment was 12 days and during the aplasia phase few patients were hospitalized or suffered infections. The toxicity of the conditioning was the leading cause of rehospitalization. The nursing staff participated by providing guidance to patients and during the mobilization, transplant and outpatient follow-up phases, thus helping to successfully manage toxicity.
Resumo:
Type 1 diabetes mellitus is a chronic disease that results from the autoimmune response against pancreatic insulin producing beta cells. Apart of several insulin regimens, since the decade of 80s various immunomodulatory regimens were tested aiming at blocking some steps of the autoimmune process against beta cell mass and at promoting beta cell preservation. In the last years, some independent research groups tried to cure type 1 diabetes with an "immunologic reset" provided by autologous hematopoietic stem cell transplantation in newly diagnosed patients, and the majority of patients became free form insulin with increasing levels of C-peptide along the time. In this review, we discuss the biology of hematopoietic stem cells and the possible advantages and disadvantages related to the high dose immunosuppression followed by autologous hematopoietic stem cell transplantation.
Resumo:
BACKGROUND: Scientific progress in the biology of hematopoietic stem cells (HSCs) provides opportunities for advances in therapy for different diseases. While stem cell sources such as umbilical cord blood (UCB) are unproblematic, other sources such as human embryonic stem cells (hESCs) raise ethical concerns. STUDY DESIGN AND METHODS: In a prospective survey we established the ethical acceptability of collection, research, and therapy with UCB HSCs versus hESCs among health care professionals, pregnant women, patients undergoing in vitro fertilization therapy, parents, and HSC donors and recipients in Switzerland. RESULTS: There was overall agreement about an ethical justification for the collection of UCB for research and therapy in the majority of participants (82%). In contrast, research and therapy with hESCs was acceptable only by a minority (38% of all responders). The collection of hESCs solely created for HSC collection purposes met overall with the lowest approval rates. Hematologists displayed among the participants the highest acceptance rates for the use of hESCs with 55% for collection, 63% for research, and 73% for therapy. CONCLUSIONS: This is the first study assessing the perception of hESCs for research and therapy in comparison with UCB HSCs in different target groups that are exposed directly, indirectly, or not at all to stem cell-based medicine. Our study shows that the debate over the legitimacy of embryo-destructive transplantation medicine is far from over as particularly hESC research continues to present an ethical problem to an overwhelming majority among laypersons and even among health care professionals.
Resumo:
Bone marrow transplantation (BMT) is commonly used for the treatment of severe haematological and immunological diseases. For instance, the autoimmune lymphoproliferative syndrome (ALPS) caused by a complete expression defect of CD95 (Fas, APO-1) can be cured by allogeneic BMT. However, since this therapy may not generate satisfactory results when only partially compatible donors are available, we were interested in the development of a potential alternative treatment by using lentiviral gene transfer of a normal copy of CD95 cDNA in hematopoietic stem cells. Here, we show that this approach applied to MRL/lpr mice results in the expression of functional CD95 receptors on the surface of lymphocytes, monocytes, and granulocytes. This suggests that correction of CD95 deficiency can be achieved by gene therapy.
Resumo:
Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasia arising from the oncogenic break point cluster region/Abelson murine leukemia viral oncogene homolog 1 translocation in hematopoietic stem cells (HSCs), resulting in a leukemia stem cell (LSC). Curing CML depends on the eradication of LSCs. Unfortunately, LSCs are resistant to current treatment strategies. The host’s immune system is thought to contribute to disease control, and several immunotherapy strategies are under investigation. However, the interaction of the immune system with LSCs is poorly defined. In the present study, we use a murine CML model to show that LSCs express major histocompatibility complex (MHC) and co-stimulatory molecules and are recognized and killed by leukemia-specific CD8+ effector CTLs in vitro. In contrast, therapeutic infusions of effector CTLs into CML mice in vivo failed to eradicate LSCs but, paradoxically, increased LSC numbers. LSC proliferation and differentiation was induced by CTL-secreted IFN-γ. Effector CTLs were only able to eliminate LSCs in a situation with minimal leukemia load where CTL-secreted IFN-γ levels were low. In addition, IFN-γ increased proliferation and colony formation of CD34+ stem/progenitor cells from CML patients in vitro. Our study reveals a novel mechanism by which the immune system contributes to leukemia progression and may be important to improve T cell–based immunotherapy against leukemia.
Resumo:
The yolk sac, first site of hematopoiesis during mammalian development, contains not only hematopoietic stem cells but also the earliest precursors of endothelial cells. We have previously shown that a nonadherent yolk sac cell population (WGA+, density <1.077, AA4.1+) can give rise to B cells, T cells, and myeloid cells both in vitro and in vivo. We now report on the ability of a yolk sac-derived cloned endothelial cell line (C166) to provide a suitable microenvironment for expansion of these early precursor cells. Single day 10 embryonic mouse yolk sac hematopoietic stem cells were expanded >100 fold within 8 days by coculture with irradiated C166 cells. Colony-forming ability was retained for at least three passages in vitro, with retention of the ability to differentiate into T-cell, B-cell, and myeloid lineages. Stem cell properties were maintained by a significant fraction of nonadherent cells in the third passage, although these stem cells expressed a somewhat more mature cell surface phenotype than the initial yolk sac stem cells. When reintroduced into adult allogeneic immunocompromised (scid) hosts, they were able to give rise to all of the leukocyte lineages, including T cells, B cells, and myeloid cells. We conclude that yolk sac endothelial cells can support the stable proliferation of multipotential hematopoietic stem cells, thus generating adequate numbers of cells for study of the mechanisms involved in their subsequent development and differentiation, for in vivo hematopoietic restitution, and for potential use as a vehicle for gene transfer.
Resumo:
Somatic mosaicism has been observed previously in the lymphocyte population of patients with Fanconi anemia (FA). To identify the cellular origin of the genotypic reversion, we examined each lymphohematopoietic and stromal cell lineage in an FA patient with a 2815–2816ins19 mutation in FANCA and known lymphocyte somatic mosaicism. DNA extracted from individually plucked peripheral blood T cell colonies and marrow colony-forming unit granulocyte–macrophage and burst-forming unit erythroid cells revealed absence of the maternal FANCA exon 29 mutation in 74.0%, 80.3%, and 86.2% of colonies, respectively. These data, together with the absence of the FANCA exon 29 mutation in Epstein–Barr virus-transformed B cells and its presence in fibroblasts, indicate that genotypic reversion, most likely because of back mutation, originated in a lymphohematopoietic stem cell and not solely in a lymphocyte population. Contrary to a predicted increase in marrow cellularity resulting from reversion in a hematopoietic stem cell, pancytopenia was progressive. Additional evaluations revealed a partial deletion of 11q in 3 of 20 bone marrow metaphase cells. By using interphase fluorescence in situ hybridization with an MLL gene probe mapped to band 11q23 to identify colony-forming unit granulocyte–macrophage and burst-forming unit erythroid cells with the 11q deletion, the abnormal clone was exclusive to colonies with the FANCA exon 29 mutation. Thus, we demonstrate the spontaneous genotypic reversion in a lymphohematopoietic stem cell. The subsequent development of a clonal cytogenetic abnormality in nonrevertant cells suggests that ex vivo correction of hematopoietic stem cells by gene transfer may not be sufficient for providing life-long stable hematopoiesis in patients with FA.
Resumo:
Pluripotent hematopoietic stem cells (PHSCs) show self-renewal and give rise to all blood cell types. The extremely low number of these cells in primary hematopoietic organs and the lack of culture systems that support proliferation of undifferentiated PHSCs have precluded the study of both the biology of these cells and their clinical application. We describe here cell lines and clones derived from PHSCs that were established from hematopoietic cells from the fetal liver or bone marrow of normal and p53-deficient mice with a combination of four growth factors. Most cell lines were Sca-1+, c-Kit+, PgP-1+, HSA+, and Lin- (B-220-, Joro 75-, 8C5-, F4/80-, CD4-, CD8-, CD3-, IgM-, and TER 119-negative) and expressed three new surface markers: Joro 177, Joro 184, and Joro 96. They did not synthesize RNA transcripts for several genes expressed at early stages of lymphocyte and myeloid/erythroid cell development. The clones were able to generate lymphoid, myeloid, and erythroid hematopoietic cells and to reconstitute the hematopoietic system of irradiated mice for a long time. The availability of lymphohematopoietic stem cell lines should facilitate the analysis of the molecular mechanisms that control self-renewal and differentiation and the development of efficient protocols for somatic gene therapy.
Resumo:
A PCR-based assay has been devised for the detection and semiquantitation of cells originating from a few donor hematopoietic stem cells (HSCs) in a background of recipient cells. Upon sequencing a segment of murine Y chromosome contained in the plasmid pY2, oligonucleotide primers were designed for specific amplification of the Y chromosome-restricted segment. The HSCs were isolated from the bone marrow of mice on day 4 following a single i.v. injection of 5-fluorouracil and were readily distinguished from other bone marrow elements by the characteristics of low density, absence of lineage-specific surface markers, lack of expression of transferrin receptor, and a high expression of major histocompatibility complex class I antigen. Injection of as few as four such HSCs was shown to produce donor-derived cells (including lymphoid cells) for at least 8 months after transplantation into syngeneic female recipients. Retransplantation, employing 10(6) bone marrow cells from the initial recipients, also yielded clear evidence of repopulation with detectable levels of male donor cells. On statistical grounds, it is clear that long-term repopulation in vivo may result from even a single HSC having the characteristics defined herein.
Resumo:
Functional compensation between homeodomain proteins has hindered the ability to unravel their role in hematopoiesis using single gene knockouts. Because HoxB genes are dispensable for hematopoiesis, and most HoxA genes are expressed an order of magnitude higher than other cluster genes in hematopoietic stem cell (HSC)-enriched populations, we hypothesize that maintenance of HoxA cluster expression is important for adult hematopoiesis and that global decrease of HoxA gene expression levels affects steady-state hematopoiesis.
Resumo:
The splicing factor SF3B1 is the most commonly mutated gene in the myelodysplastic syndrome (MDS), particularly in patients with refractory anemia with ring sideroblasts (RARS). We investigated the functional effects of SF3B1 disruption in myeloid cell lines: SF3B1 knockdown resulted in growth inhibition, cell cycle arrest and impaired erythroid differentiation and deregulation of many genes and pathways, including cell cycle regulation and RNA processing. MDS is a disorder of the hematopoietic stem cell and we thus studied the transcriptome of CD34 + cells from MDS patients with SF3B1 mutations using RNA sequencing. Genes significantly differentially expressed at the transcript andor exon level in SF3B1 mutant compared with wild-type cases include genes that are involved in MDS pathogenesis (ASXL1 and CBL), iron homeostasis and mitochondrial metabolism (ALAS2, ABCB7 and SLC25A37) and RNA splicingprocessing (PRPF8 and HNRNPD). Many genes regulated by a DNA damage-induced BRCA1-BCLAF1-SF3B1 protein complex showed differential expressionsplicing in SF3B1 mutant cases. This is the first study to determine the target genes of SF3B1 mutation in MDS CD34 + cells. Our data indicate that SF3B1 has a critical role in MDS by affecting the expression and splicing of genes involved in specific cellular processespathways, many of which are relevant to the known RARS pathophysiology, suggesting a causal link.