982 resultados para heat pump dryer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the influence of hydraulics and control of thermal storage in systems combined with solar thermal and heat pump for the production of warm water and space heating in dwellings. A reference air source heat pump system with flat plate collectors connected to a combistore was defined and modeled together with the IEA SHC Task 44 / HPP Annex 38 (T44A38) “Solar and Heat Pump Systems” boundary conditions of Strasbourg climate and SFH45 building. Three and four pipe connections as well as use of internal and external heat exchangers for DHW preparation were investigated as well as sensor height for charging of the DHW zone in the store. The temperature in this zone was varied to ensure the same DHW comfort was achieved in all cases. The results show that the four pipe connection results in 9% improvement in SPF compared to three pipe and that the external heat exchanger for DHW preparation leads to a 2% improvement compared to the reference case. Additionally the sensor height for charging the DHW zone of the store should not be too low, otherwise system performance is adversely affected

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exploiting solar energy technology for both heating and cooling purposes has the potential of meeting an appreciable portion of the energy demand in buildings throughout the year. By developing an integrated, multi-purpose solar energy system, that can operate all twelve months of the year, a high utilisation factor can be achieved which translates to more economical systems. However, there are still some techno-economic barriers to the general commercialisation and market penetration of such technologies. These are associated with high system and installation costs, significant system complexity, and lack of knowledge of system implementation and expected performance. A sorption heat pump module that can be integrated directly into a solar thermal collector has thus been developed in order to tackle the aforementioned market barriers. This has been designed for the development of cost-effective pre-engineered solar energy system kits that can provide both heating and cooling. This thesis summarises the characterisation studies of the operation of individual sorption modules, sorption module integrated solar collectors and a full solar heating and cooling system employing sorption module integrated collectors. Key performance indicators for the individual sorption modules showed cooling delivery for 6 hours at an average power of 40 W and a temperature lift of 21°C. Upon integration of the sorption modules into a solar collector, measured solar radiation energy to cooling energy conversion efficiencies (solar cooling COP) were between 0.10 and 0.25 with average cooling powers between 90 and 200 W/m2 collector aperture area. Further investigations of the sorption module integrated collectors implementation in a full solar heating and cooling system yielded electrical cooling COP ranging from 1.7 to 12.6 with an average of 10.6 for the test period. Additionally, simulations were performed to determine system energy and cost saving potential for various system sizes over a full year of operation for a 140 m2 single-family dwelling located in Madrid, Spain. Simulations yielded an annual solar fraction of 42% and potential cost savings of €386 per annum for a solar heating and cooling installation employing 20m2 of sorption integrated collectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found. © 2012 The Authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of a solar-boosted heat pump water heater (HPWH) operating under full load and part load conditions was determined in an outdoor experimental study. The system utilised flat unglazed aluminium solar evaporator panels to absorb solar and ambient energy. Absorbed energy was transferred to the water tank by means of the heat pump and a wrap around condenser coil on the outside of the tank. The system COP was found to be in the range of 5–7 under clear daytime conditions and 3–5 under clear night-time conditions. Using part load testing of the HPWH system it was found that concentrating the coils in the lower portion of the tank could increase the efficiency of the condenser coil. It was also shown that there exists a generalised linear relationship that can be used to describe the system COP in terms of the temperature difference between the water in the storage tank and the ambient air.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seasonal performance evaluation methods for water heaters are reviewed and an experimental method for rating air-source heat pump water heaters is presented. The rating method is based on measured heat pump performance during heat-up operation of particular products rather than a generic simulation model of heat pump performance. The measured performance is used in a correlation model of the heat pump unit in an annual load-cycle system performance simulation based on the TRNSYS simulation package.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Greenhouse heating costs for some commercial growers in southern Australia are now a significant production cost. This is particularly the case for those operators who installed heating systems using liquefied petroleum gas (LPG) when this fuel was relatively inexpensive. Heat pump systems used in various configurations have been suggested as an option for reducing energy use and costs for greenhouse heating, particularly if off-peak electricity is used. This paper investigates the financial and environmental viability of an air-to-water heat pump system for a 4000 m2 greenhouse, located 120 km north of Melbourne, Victoria. The simulation software, TRNSYS, was used to predict the performance of the system. The heat pump system was found to have a simple payback period of approximately six years and reduce LPG consumption by 16%. Greenhouse gas emissions were 3% higher using the heat pump system, compared to the existing LPG boiler.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the work described here has been to seek methods of narrowing the present gap between currently realised heat pump performance and the theoretical limit. The single most important pre-requisite to this objective is the identification and quantitative assessment of the various non-idealities and degradative phenomena responsible for the present shortfall. The use of availability analysis has been introduced as a diagnostic tool, and applied to a few very simple, highly idealised Rankine cycle optimisation problems. From this work, it has been demonstrated that the scope for improvement through optimisation is small in comparison with the extensive potential for improvement by reducing the compressor's losses. A fully instrumented heat pump was assembled and extensively tested. This furnished performance data, and led to an improved understanding of the systems behaviour. From a very simple analysis of the resulting compressor performance data, confirmation of the compressor's low efficiency was obtained. In addition, in order to obtain experimental data concerning specific details of the heat pump's operation, several novel experiments were performed. The experimental work was concluded with a set of tests which attempted to obtain definitive performance data for a small set of discrete operating conditions. These tests included an investigation of the effect of two compressor modifications. The resulting performance data was analysed by a sophisticated calculation which used that measurements to quantify each dagradative phenomenon occurring in that compressor, and so indicate where the greatest potential for improvement lies. Finally, in the light of everything that was learnt, specific technical suggestions have been made, to reduce the losses associated with both the refrigerant circuit and the compressor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat pumps are becoming increasingly popular, but poor electricity generating efficiency limits the potential energy savings of electrically powered units. Thus the work reported in this thesis concerns the development of a range of gas engine driven heat pumps for industrial and commercial heating applications, which recover heat from the prime mover, normally rejected to waste. Despite the convenience of using proprietary engine heat recovery packages, investigations have highlighted the necessity to ensure the engine and the heat recovery equipment are compatible. A problem common •to all air source heat pumps is the formation of frost on the evaporator, which must be removed periodically, with the expenditure of energy, to ensure the continued operation of the plant. An original fluidised bed defrosting mechanism is proposed, which prevents the build-up of this frost, and also improves system performance. Criticisms have been levelled against the rotary sliding vane compressor, in particular the effects of lubrication, which is essential. This thesis compares the rotary sliding vane compressor with other machines, and concludes that many of these criticisms are unfounded. A confidential market survey indicates an increasing demand for heat pumps up to and including 1990, and the technical support needed to penetrate this market is presented. Such support includes the development of a range of modular gas engine driven heat pumps, and a computer aided design for the selection of the optimum units. A case study of a gas engine driven heat pump for a swimming pool application which provided valuable experience is included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study on heat pump thermodynamic characteristics has been made in the laboratory on a specially designed and instrumented air to water heat pump system. The design, using refrigerant R12, was based on the requirement to produce domestic hot water at a temperature of about 50 °C and was assembled in the laboratory. All the experimental data were fed to a microcomputer and stored on disk automatically from appropriate transducers via amplifier and 16 channel analogue to digital converters. The measurements taken were R12 pressures and temperatures, water and R12 mass flow rates, air speed, fan and compressor input powers, water and air inlet and outlet temperatures, wet and dry bulb temperatures. The time interval between the observations could be varied. The results showed, as expected, that the COP was higher at higher air inlet temperatures and at lower hot water output temperatures. The optimum air speed was found to be at a speed when the fan input power was about 4% of the condenser heat output. It was also found that the hot water can be produced at a temperature higher than the appropriate R12 condensing temperature corresponding to condensing pressure. This was achieved by condenser design to take advantage of discharge superheat and by further heating the water using heat recovery from the compressor. Of the input power to the compressor, typically about 85% was transferred to the refrigerant, 50 % by the compression work and 35% due to the heating of the refrigerant by the cylinder wall, and the remaining 15% (of the input power) was rejected to the cooling medium. The evaporator effectiveness was found to be about 75% and sensitive to the air speed. Using the data collected, a steady state computer model was developed. For given input conditions s air inlet temperature, air speed, the degree of suction superheat , water inlet and outlet temperatures; the model is capable of predicting the refrigerant cycle, compressor efficiency, evaporator effectiveness, condenser water flow rate and system Cop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis records the design and development of an electrically driven, air to water, vapour compression heat pump of nominally 6kW heat output, for residential space heating. The study was carried out on behalf of GEC Research Ltd through the Interdisciplinary Higher Degrees Scheme at Aston University. A computer based mathematical model of the vapour compression cycle was produced as a design aid, to enable the effects of component design changes or variations in operating conditions to be predicted. This model is supported by performance testing of the major components, which revealed that improvements in the compressor isentropic efficiency offer the greatest potential for further increases in cycle COPh. The evaporator was designed from first principles, and is based on wire-wound heat transfer tubing. Two evaporators, of air side area 10.27 and 16.24m2, were tested in a temperature and humidity controlled environment, demonstrating that the benefits of the large coil are greater heat pump heat output and lower noise levels. A systematic study of frost growth rates suggested that this problem is most severe at the conditions of saturated air at 0oC combined with low condenser water temperature. A dynamic simulation model was developed to predict the in-service performance of the heat pump. This study confirmed the importance of an adequate radiator area for heat pump installations. A prototype heat pump was designed and manufactured, consisting of a hermetic reciprocating compressor, a coaxial tube condenser and a helically coiled evaporator, using Refrigerant 22. The prototype was field tested in a domestic environment for one and a half years. The installation included a comprehensive monitoring system. Initial problems were encountered with defrosting and compressor noise, both of which were solved. The unit then operated throughout the 1985/86 heating season without further attention, producing a COPh of 2.34.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT