948 resultados para habitat selection
Resumo:
A description of the foraging habitat of a cetacean species is critical for conservation and effective management. We used a fine-scale microhabitat approach to examine patterns in bottlenose dolphin (Tursiops truncatus) foraging distribution in relation to dissolved oxygen, turbidity, salinity, water depth, water temperature, and distance from shore measurements in a highly turbid estuary on the northern Gulf of Mexico. In general, environmental variation in the Barataria Basin marine environment comprises three primary axes of variability (i.e., factors: temperature and dissolved oxygen, salinity and turbidity, and distance and depth) that represent seasonal, spatial-seasonal, and spatial scales, respectively. Foraging sites were differentiated from nonforaging sites by significant differences among group size, temperature, turbidity, and season. Habitat selection analysis on individual variables indicated that foraging was more frequently observed in waters 4–6 m deep, 200–500 m from shore, and at salinity values of around 20 psu. This fine-scale and multivariate approach represents a useful method of exploring the complexity, gradation, and detail of the relationships between environmental variables and the foraging distribution patterns of bottlenose dolphin.
Resumo:
We evaluated habitat quality for juvenile California halibut (Paralichthys californicus) in a Pacific Coast estuary lacking in strong salinity gradients by examining density, recent otolith growth rates, and gut fullness levels of wild-caught and caged juveniles for one year. Juveniles <200 mm standard length were caught consistently in the inner, central, and outer sections of the estuary. The density of juveniles was two times higher in the inner estuary during most of the year, consistent with active habitat selection by part of the population. A generalized linear model indicated temperature, sampling time, and the interaction between salinity and temperature were significantly related to density. However, the model explained only 21% of the variance. Gut fullness levels of wild-caught juveniles were highest during the summer, but recent otolith growth rates were not related to temperature. The proportion of individuals feeding successfully indicated that seasonal differences in food availability are more important than spatial variation in prey abundance in driving feeding success. Feeding success of caged fishes was limited, precluding the use of growth rates as indicators of local habitat quality. However, marginal increment widths were reliable indicators of somatic growth at low growth rates over two-week periods. The relatively high growth rates and abundance of small wild-caught juveniles found throughout the estuary indicates that the entire estuary system has the potential for serving as nursery habitat.
Resumo:
The oceanographic drivers of marine vertebrate habitat use are poorly understood yet fundamental to our knowledge of marine ecosystem functioning. Here, we use composite front mapping and high-resolution GPS tracking to determine the significance of mesoscale oceanographic fronts as physical drivers of foraging habitat selection in northern gannets Morus bassanus. We tracked 66 breeding gannets from a Celtic Sea colony over 2 years and used residence time to identify area-restricted search (ARS) behaviour. Composite front maps identified thermal and chlorophyll-a mesoscale fronts at two different temporal scales—(i) contemporaneous fronts and (ii) seasonally persistent frontal zones. Using generalized additive models (GAMs), with generalized estimating equations (GEE-GAMs) to account for serial autocorrelation in tracking data, we found that gannets do not adjust their behaviour in response to contemporaneous fronts. However, ARS was more likely to occur within spatially predictable, seasonally persistent frontal zones (GAMs). Our results provide proof of concept that composite front mapping is a useful tool for studying the influence of oceanographic features on animal movements. Moreover, we highlight that frontal persistence is a crucial element of the formation of pelagic foraging hotspots for mobile marine vertebrates.
Resumo:
La variabilité spatiale et temporelle de l’écoulement en rivière contribue à créer une mosaïque d’habitat dynamique qui soutient la diversité écologique. Une des questions fondamentales en écohydraulique est de déterminer quelles sont les échelles spatiales et temporelles de variation de l’habitat les plus importantes pour les organismes à divers stades de vie. L’objectif général de la thèse consiste à examiner les liens entre la variabilité de l’habitat et le comportement du saumon Atlantique juvénile. Plus spécifiquement, trois thèmes sont abordés : la turbulence en tant que variable d’habitat du poisson, les échelles spatiales et temporelles de sélection de l’habitat et la variabilité individuelle du comportement du poisson. À l’aide de données empiriques détaillées et d’analyses statistiques variées, nos objectifs étaient de 1) quantifier les liens causaux entre les variables d’habitat du poisson « usuelles » et les propriétés turbulentes à échelles multiples; 2) tester l’utilisation d’un chenal portatif pour analyser l’effet des propriétés turbulentes sur les probabilités de capture de proie et du comportement alimentaire des saumons juvéniles; 3) analyser les échelles spatiales et temporelles de sélection de l’habitat dans un tronçon l’été et l’automne; 4) examiner la variation individuelle saisonnière et journalière des patrons d’activité, d’utilisation de l’habitat et de leur interaction; 5) investiguer la variation individuelle du comportement spatial en relation aux fluctuations environnementales. La thèse procure une caractérisation détaillée de la turbulence dans les mouilles et les seuils et montre que la capacité des variables d’habitat du poisson usuelles à expliquer les propriétés turbulentes est relativement basse, surtout dans les petites échelles, mais varie de façon importante entre les unités morphologiques. D’un point de vue pratique, ce niveau de complexité suggère que la turbulence devrait être considérée comme une variable écologique distincte. Dans une deuxième expérience, en utilisant un chenal portatif in situ, nous n’avons pas confirmé de façon concluante, ni écarté l’effet de la turbulence sur la probabilité de capture des proies, mais avons observé une sélection préférentielle de localisations où la turbulence était relativement faible. La sélection d’habitats de faible turbulence a aussi été observée en conditions naturelles dans une étude basée sur des observations pour laquelle 66 poissons ont été marqués à l’aide de transpondeurs passifs et suivis pendant trois mois dans un tronçon de rivière à l’aide d’un réseau d’antennes enfouies dans le lit. La sélection de l’habitat était dépendante de l’échelle d’observation. Les poissons étaient associés aux profondeurs modérées à micro-échelle, mais aussi à des profondeurs plus élevées à l’échelle des patchs. De plus, l’étendue d’habitats utilisés a augmenté de façon asymptotique avec l’échelle temporelle. L’échelle d’une heure a été considérée comme optimale pour décrire l’habitat utilisé dans une journée et l’échelle de trois jours pour décrire l’habitat utilisé dans un mois. Le suivi individuel a révélé une forte variabilité inter-individuelle des patrons d’activité, certains individus étant principalement nocturnes alors que d’autres ont fréquemment changé de patrons d’activité. Les changements de patrons d’activité étaient liés aux variables environnementales, mais aussi à l’utilisation de l’habitat des individus, ce qui pourrait signifier que l’utilisation d’habitats suboptimaux engendre la nécessité d’augmenter l’activité diurne, quand l’apport alimentaire et le risque de prédation sont plus élevés. La variabilité inter-individuelle élevée a aussi été observée dans le comportement spatial. La plupart des poissons ont présenté une faible mobilité la plupart des jours, mais ont occasionnellement effectué des mouvements de forte amplitude. En fait, la variabilité inter-individuelle a compté pour seulement 12-17% de la variabilité totale de la mobilité des poissons. Ces résultats questionnent la prémisse que la population soit composée de fractions d’individus sédentaires et mobiles. La variation individuelle journalière suggère que la mobilité est une réponse à des changements des conditions plutôt qu’à un trait de comportement individuel.
Resumo:
The Marbled Murrelet (Brachyramphus marmoratus) is a threatened alcid that nests almost exclusively in old-growth forests along the Pacific coast of North America. Nesting habitat has significant economic importance. Murrelet nests are extremely difficult and costly to find, which adds uncertainty to management and conservation planning. Models based on air photo interpretation of forest cover maps or assessments by low-level helicopter flights are currently used to rank presumed Marbled Murrelet nesting habitat quality in British Columbia. These rankings are assumed to correlate with nest usage and murrelet breeding productivity. Our goal was to find the models that best predict Marbled Murrelet nesting habitat in the ground-accessible portion of the two regions studied. We generated Resource Selection Functions (RSF) using logistic regression models of ground-based forest stand variables gathered at plots around 64 nests, located using radio-telemetry, versus 82 random habitat plots. The RSF scores are proportional to the probability of nests occurring in a forest patch. The best models differed somewhat between the two regions, but include both ground variables at the patch scale (0.2-2.0 ha), such as platform tree density, height and trunk diameter of canopy trees and canopy complexity, and landscape scale variables such as elevation, aspect, and slope. Collecting ground-based habitat selection data would not be cost-effective for widespread use in forestry management; air photo interpretation and low-level aerial surveys are much more efficient methods for ranking habitat suitability on a landscape scale. This study provides one method for ground-truthing the remote methods, an essential step made possible using the numerical RSF scores generated herein.
Resumo:
Ecological traps are attractive population sinks created when anthropogenic habitat alteration inadvertently creates a mismatch between the attractiveness of a habitat based upon its settlement cues, and its current value for survival or reproduction. Traps represent a new threat to the conservation of native species, yet little attention has been given to developing practical approaches to eliminating them. In the northern Rocky Mountains of Montana, Olive-sided Flycatchers (Contopus cooperi) prefer to settle in patches of selectively harvested forest versus burned forest despite the lower reproductive success and higher nest predation risk associated with the former habitat. I investigated characteristics of preferred perch sites for this species and how these preferences varied between habitats and sexes. I then built on previous research to develop a range of management prescriptions for reducing the attractiveness of selectively harvested forest, thereby disarming the ecological trap. Female flycatchers preferred to forage from shorter perch trees than males, and females’ perches were shorter than other available perch trees. Both sexes preferred standing dead perch trees (snags) and these preferences were most obvious in harvested forest where snags are rarer. Because previous research shows that snag density is linked to habitat preference and spruce/fir trees are preferred nest substrate, my results suggest these two habitat components are focal habitat selection cues. I suggest alternative and complementary strategies for eliminating the ecological trap for Olive-sided Flycatchers including: (1) reduced retention and creation of snags, (2) avoiding selective harvest in spruce, fir, and larch stands, (3) avoiding retention of these tree species, and (4) selecting only even-aged canopy height trees for retention so as to reduce perch availability for female flycatchers. Because these strategies also have potential to negatively impact habitat suitability for other forest species or even create new ecological traps, we urge caution in the application of our management recommendations.
Resumo:
Although most raptor species are found mainly in the tropics, information on their home range and spatial requirements in the Neotropics is still scarce. In this study, we used radio telemetry to evaluate the home range and the habitat use and selection of five Roadside hawks, Rupornis magnirostris (Gmelin, 1788) in a heterogeneous landscape in southeastern Brazil. The average home range size calculated using the adaptive kernel method (95% isopleth) was 126.1ha (47.4-266.7ha), but using the minimum convex polygon method (95% isopleth) it was 143.54ha (32.6-382.3ha). The roadside hawk explored a wide variety of habitats, most of them opportunistically, as suggested in the literature. Despite this, habitat quality could influence home range size and promote habitat selection. The observation of habitat use as expected, as well as the relatively small home range size, could be related to the generalist/opportunistic behaviour of the roadside hawk.
Resumo:
When assessing fragmentation effects on species, not only habitat preferences on the landscape scale, but also microhabitat selection is an important factor to consider, as microhabitat is also affected by habitat disturbance, but nevertheless essential for species for foraging, nesting and sheltering. In the Atlantic Rainforest of Brazil we examined microhabitat selection of six Pyriglena leucoptera (white-shouldered fire-eye), 10 Sclerurus scansor (rufous-breasted leaftosser), and 30 Chiroxiphia caudata (blue manakin). We radio-tracked the individuals between May 2004 and February 2005 to gain home ranges based on individual fixed kernels. Vegetation structures in core plots and fringe plots were compared. In C. caudata, we additionally assessed the influence of behavioural traits on microhabitat selection. Further, we compared microhabitat structures in the fragmented forest with those in the contiguous, and contrasted the results with the birds` preferences. Pyriglena leucoptera preferred liana tangles that were more common in the fragmented forest, whereas S. scansor preferred woody debris, open forest floor (up to 0.5 m), and a thin closed leaf litter cover which all occurred significantly more often in the contiguous forest. Significant differences were detected in C. caudata for vegetation densities in the different strata; the distance of core plots to the nearest lek site was significantly influenced by sex and age. However, core sites of C. caudata in fragmented and contiguous forests showed no significant differences in structure. Exploring microhabitat selection and behavior may greatly support the understanding of habitat selection of species and their susceptibility to fragmentation on the landscape scale.
Resumo:
Bourguyia hamata females oviposit almost exclusively inside the rosette formed by the curled leaves of the epiphytic bromeliad Aechmea nudicaulis. We investigated whether the architecture of the individual bromeliads influences oviposition site selection by this harvestman species. We collected data on the presence of clutches inside bromeliads, rosette length, rosette slope in relation to tree trunks, and the amount of debris inside the rosette. Additionally, we measured the water volume inside the rosettes as well as the variation in the humidity inside and outside bromeliads with long and short rosettes. Longer rosettes were preferred as oviposition site possibly because they accumulate more water and maintain lower internal humidity variation than the external environment. Although the slope of the rosettes did not influence the occurrence of oviposition, the probability of debris accumulation inside the rosettes increased with their slope, and the frequency of clutches was greater in bromeliads with small amounts of debris. A field experiment showed that bromeliads with water inside the rosette were more frequently used as oviposition sites than bromeliads without water. In conclusion, females oviposit predominantly in bromeliads that accumulate more water and have small amounts of debris inside the rosettes, probably because these characteristics promote a more adequate microhabitat for egg development.
Resumo:
We tested the hypothesis that microhabitat variables, abundance of terrestrial rodents, and microhabitat selection patterns of terrestrial rodents vary between the cool-dry and warm-wet season in the Atlantic forest of Brazil. We selected variables associated with ecological factors potentially important to terrestrial rodents (physical structure of litter and woody debris, and arthropod availability) and established 25 small, independent sampling units covering 36 ha of a homogenous, mature Atlantic forest patch. Litter humidity and height, amount of small woody debris, arthropod availability, and terrestrial rodent abundance increased, whereas the quantity of large woody debris decreased in the warm-wet season. Greater spatial segregation among terrestrial rodents also was observed in this season, especially between morphologically similar species. The distribution of 3 of the 4 most common terrestrial rodents was influenced by microhabitat variables in at least I of the seasons, and these species also differed in their pattern of microhabitat selection between seasons. In general, the amount of small woody debris and litter humidity were more important for the microscale distribution of terrestrial rodents in the cool-dry season, whereas in the mild warm-wet season species distributions were associated with food availability or were not clearly influenced by the measured variables. The patterns of microhabitat selection by 3 common terrestrial rodents, which were associated with features that characterize old-growth forest, may be responsible for their vulnerability to forest fragmentation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The brown-nosed coati (Nasua nasua) is a carnivorous species found in all the Brazilian biomes, some of which are endangered areas. The aim of this work was to determine the habitat use and selection, home range and core area of N. nasua in the Cerrado biome, central region of Tocantins, Brazil. The study was carried out in an area of approximately 20 000ha from May 2000 to July 2002. A total of seven box traps were placed in the area for 13 months, three of 11 captured animals were followed and monitored by radio-tracking during 13 months. The monitoring was conducted once a day, three times a week using a car and walking through the study area (radio-tracking and visual contact). The results demonstrate that these three males used more frequently the gallery forest formation, followed by cerrado and wetlands. The use of gallery forest by these animals indicated an habitat selection (Proportion test, z=12.98, p< 0.01). Besides, adult males used the gallery forest more frequently (Fisher's exact test, p<0.01) and wetlands less frequently (Fisher's exact test, p<0.01) than juvenile males, without significant differences between animal ages for cerrado percentage of habitat use. Besides, results also showed a gallery forest selection by adult (Proportion test z= 13.62, p<0.01) and juvenile (Proportion test z=2.68, p<0.01) males, and a wetland selection by the juvenile male (Proportion test z=3.90, p<0.01). The home ranges varied from 2.20 to 7.55km2 for the Minimum Convex Polygon 100% (MCP 100%) and from 4.38 to 13.32km2 for the Harmonic Mean 95% (HM 95%). The smallest home range overlap occurred between the adult males (Nm1 and Nm3), and the greatest between the juvenile Njm2 and the adult Nm1. The average of the core area (HM 75%) for the three monitored animals represented 21.29% of the home range calculated with HM 95%. No overlap between core areas was observed for adult males, but, it was an overlap between the core area of the juvenile male and its band with that of the two adult males. The present study provides new data on core area size and frequency habitat use by adult and juvenile males of N. nasua in the Brazilian Cerrado, that may support conservation efforts. Rev. Biol. Trop. 58 (3): 1069-1077. Epub 2010 September 01.
Resumo:
To clarify the functional mechanisms of habitat use is necessary to analyze it in conjunction with the conduct performed by animals. The occurrence, distribution and use of space are characteristic of a species resulting from habitat selection that is in search of conditions favorable to its survival. One can relate the physical and biological factors of the environment with the ecological characteristics of the species, since these factors act by regulating the ecological success of organisms, and from there you can get important information about the habitat use and behavior of individuals. This study aimed to characterize the use of habitat and diurnal activity expressed by the Guiana dolphin, Sotalia guianensis in an estuarine area of Sergipe state, Brazil, analyzing the influence of tide and time days on the occurrence of animals and behavior s state, and group s size and composition in this cetacean species. From March 2009 to February 2010, focal groups observations of dolphins were made from fixed - point and records snapshots of data taken every 5 min. in the interval from 6 a.m to 6 p.m, in alternating shifts. The results showed that the constant presence of animals in the area of the Sergipe River estuary indicates that this is an important area of occurrence of S. guianensis, which use the region mainly in the morning, at low tide and as a feeding. As in other regions of northeastern Brazil, small groups formed 2-12 individuals were most common, with adults and immatures. The high frequency of immature animals may indicate that this area of the estuary is used as brood area and parental care of pups and young animals, since the immature animals were very associated with adults and monitoring the activities of foraging / feeding may be related to a form of learning or training of such behavior
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Females of some Thomisidae species are known to use visual and olfactory stimuli to select high quality hunting sites. However, because studies about foraging behavior in this family are concentrated on a few species, the comprehension of the process related to hunting behavior evolution in crab spiders may be biased. In this study we investigated the hunting site selection of a previously unstudied crab spider, Epicadus heterogaster. We performed three experiments to evaluate the hypothesis that subadult females are able to use visual and olfactory stimuli to select hunting sites. In the first experiment, females did not preferentially select flower paper models that matched their body coloration. However, after choosing a model that had the same body color as the spider, they remained on it for longer periods than on models with different colors. In the second experiment, females did not discriminate between flower paper models, natural flower models and crumpled paper models. Females did also not discriminate among different olfactory stimuli in the third experiment. It is possible that subadult females of E. heterogaster need to establish and experience a given hunting site before evaluating its quality. However, it remains to be investigated if they use UV cues to select a foraging area before experiencing it.