624 resultados para gypsum plastering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

O trabalho foi conduzido em área de expansão de cana-de-açúcar da Usina Vale do Paraná, no município de Suzanápolis - SP, na região do noroeste paulista. Foi utilizada a variedade de cana RB92-5345, espaçamento de 1,5 m entre linhas, em ARGISSOLO VERMELHO. O trabalho objetivou avaliar a produtividade em cana-planta e 1ª cana-soca e alguns atributos químicos de solo, em função dos métodos de preparo do solo e aplicação ou não de gesso. O delineamento experimental utilizado foi o de blocos ao acaso, com seis tratamentos, fatorial 3x2, e seis repetições. Os tratamentos principais foram preparos de solo com três equipamentos: arado de aivecas, escarificador e grade pesada, e dois tratamentos secundários com aplicação de 1 t ha-1 de gesso e sem gesso. Após cada colheita da cana, o solo foi caracterizado quanto aos indicadores de fertilidade nas camadas de 0,0-0,15; 0,15-0,30 e 0,30-0,45 m. As diferenças dos atributos químicos do solo, devido aos métodos de preparo ocorridas na cana-planta, não perduraram até a colheita da 1ª cana-soca e também não influenciaram na produtividade da cultura. A gessagem proporcionou maiores valores de ATR e produtividade de TCH, para cana-planta e 1ª cana-soca, respectivamente, confirmando a hipótese inicial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant communities on weathered rock and outcrops are characterized by high values in species richness (Dengler 2006) and often persist on small and fragmented surfaces. Yet very few studies have examined the relationships between heterogeneity and plant diversity at small scales, in particular in poor-nutrient and low productive environment (Shmida and Wilson 1985, Lundholm 2003). In order to assess these relationships both in space and time in relationship, two different approaches were employed in the present study, in two gypsum outcrops of Northern Apennine. Diachronic and synchronic samplings from April 2012 to March 2013 were performed. A 50x50 cm plot was used in both samplings such as the sampling unit base. The diachronic survey aims to investigate seasonal patterning of plant diversity by the use of images analysis techniques integrated with field data and considering also seasonal climatic trend, the substrate quality and its variation in time. The purpose of the further, synchronic sampling was to describe plant diversity pattern as a function of the environmental heterogeneity meaning in substrate typologies, soil depth and topographic features. Results showed that responses of diversity pattern depend both on the resources availability, environmental heterogeneity and the manner in which the different taxonomic group access to them during the year. Species richness and Shannon diversity were positively affected by increasing in substrate heterogeneity. Furthermore a good turnover in seasonal species occurrence was detected. This vegetation may be described by the coexistence of three groups of species which created a gradient from early colonization stages, characterized by greater slope and predominance of bare rock, gradually to situation of more developed soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining the formation temperature of minerals using fluid inclusions is a crucial step in understanding rock-forming scenarios. Unfortunately, fluid inclusions in minerals formed at low temperature, such as gypsum, are commonly in a metastable monophase liquid state. To overcome this problem, ultra-short laser pulses can be used to induce vapor bubble nucleation, thus creating a stable two-phase fluid inclusion appropriate for subsequent measurements of the liquid-vapor homogenization temperature, T-h. In this study we evaluate the applicability of T-h data to accurately determine gypsum formation temperatures. We used fluid inclusions in synthetic gypsum crystals grown in the laboratory at different temperatures between 40 degrees C and 80 degrees C under atmospheric pressure conditions. We found an asymmetric distribution of the T-h values, which are systematically lower than the actual crystal growth temperatures, T-g; this is due to (1) the effect of surface tension on liquid-vapor homogenization, and (2) plastic deformation of the inclusion walls due to internal tensile stress occurring in the metastable state of the inclusions. Based on this understanding, we have determined growth temperatures of natural giant gypsum crystals from Naica (Mexico), yielding 47 +/- 1.5 degrees C for crystals grown in the Cave of Swords (120 m below surface) and 54.5 +/- 2 degrees C for giant crystals grown in the Cave of Crystals (290 m below surface). These results support the earlier hypothesis that the population and the size of the Naica crystals were controlled by temperature. In addition, this experimental method opens a door to determining the growth temperature of minerals forming in low-temperature environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gypsum deposits are widespread geographically and are in many geo­logic formations. Ordinarily their character and origin, for the most part sedimentary, are not difficult to ascertain. Near Lewis and Clark Caverns, east of Whitehall, Montana, occurs a deposit of gypsum unique in many re­spects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gypsum and halite crystals, together with saponite and phillipsite, were found in a vein in a basalt sill 625 m below the sea floor at DSDP Site 395A, located 190 km west of the crest of the Mid-Atlantic Ridge. The delta34S value of the gypsum (+19.4?) indicates a seawater source for the sulfate. The delta18O values of the saponite (+19.9?) and phillipsite (+18.1?) indicate either formation from normal seawater at about 55°C or formation from delta18O-depleted seawater at a lower temperature. The gypsum (which could be secondary after anhydrite) was formed by reaction between Ca[2+] released from basalt and SO4[2-] in circulating seawater. The halite could have formed when water was consumed by hydration of basalt under conditions of extremely restricted circulation. A more probable mechanism is that the gypsum was originally precipitated as anhydrite at temperatures above 60°C. As the temperature dropped the anhydrite converted to gypsum. The conversion would consume water, which could cause halite precipitation, and would cause an increase in the volume of solids, which would plug the vein and prevent subsequent dissolution of the halite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Authigenic gypsum, pyrite, and glauconite are disseminated throughout an unusually long (346 m) Miocene section of mixed biogenic carbonate and diatomaceous ooze drilled on the Falkland Plateau at DSDP Site 329 (water depth, 1519 m). The present organic carbon content of the sediment is low, ranging between 0.1 and 0.7%. Gypsum occurs as euhedral single or twinned crystals of selenite up to 5 mm in diameter, sometimes in the form of gypsum rosettes. These crystals are intact and unabraded, comprising up to 4% of the washed sample. The authigenic nature of the gypsum is demonstrated by the presence of diatoms and radiolarians embedded within the gypsum crystals. The gypsum co-occurs with pyrite and glauconite in these samples. The pyrite occurs as framboids, foraminiferal infillings, rods, and granular sheetlike masses composed of pyrite octahedra. The glauconite occurs as foraminiferal infillings and as free grains. The gypsum and pyrite were identified by energy-dispersive X-ray analysis and scanning electron micrographs. Some of the gypsum has grown on pyrite, indicating that it precipitated after the pyrite, perhaps in response to a change in pH conditions. The formation of the mineral suite can be explained by current models of in situ sulfide and sulfate precipitation coincident with diagenesis and oxidation of much of the original organic carbon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of gypsum in marine sediments has been investigated through the calculation of its saturation index at the sediment in situ temperature and pressure, using the entire ODP/IODP porewater composition database (14416 samples recovered from sediments collected during 95 ODP and IODP Legs). Saturation is reached in sediment porewaters of 26 boreholes drilled at 23 different sites, during 12 ODP/IODP Legs. As ocean bottom seawater is largely undersaturated with respect to gypsum, the porewater Ca content or its SO4 concentration, or both, must increase in order to reach equilibrium. At several sites equilibrium is reached either through the presence of evaporitic gypsum layers found in the sedimentary sequence, and/or through a salinity increase due to the presence of evaporitic brines with high concentrations of Ca and SO4. Saturation can also be reached in porewaters of seawater-like salinity (~ 35 per mil), provided sulfate reduction is limited. In this case, saturation is due to the alteration of volcanogenic material which releases large amounts of Ca to the porewaters, where the Ca concentration can reach 55 times its seawater value as for example at ODP Leg 134 site 833. At a few sites, saturation is reached in hydrothermal environments, or as a consequence of the alteration of the basaltic basement. In addition to the well known influence of brines on the formation of gypsum, these results indicate that the alteration of sediments rich in volcanogenic material is a major process leading to gypsum saturation in marine sediment porewaters. Therefore, the presence of gypsum in ancient and recent marine sediments should not be systematically interpreted as due to hypersaline waters, especially if volcanogenic material is present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work focuses on gypsum mortar manufactu red in traditional kilns and used historically as exterior rendering. A documentation survey has been carried out followed by an experimental analysis using geological techniques. Conclusion shows that traditional gypsum is formed by anhydrite and inert active impurities (crystalline amorphous silica; cl ays and hydraulic phases) produced by the craft manufacture process of the system, in a kiln with a 200ºC to 1000ºC temperature interval, and continuo us fuel supply during 36 hours. Anhydrite together wit h the hydraulic phases set at consecutive time peri ods and with the presence of moisture improve the physi cal and mechanical properties of the final product. The hydration system is of great complexity and sho ws a very slow kinetics when in presence of impurities

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Absorbed Directory of cement, gypsum, lime, sand, gravel and crushed-stone plants in 1930 and assumed its volume numbering.