997 resultados para growth acceleration
Resumo:
The fatigue crack growth properties of friction stir welded joints of 2024-T3 aluminium alloy have been studied under constant load amplitude (increasing-Delta K), with special emphasis on the residual stress (inverse weight function) effects on longitudinal and transverse crack growth rate predictions (Glinka`s method). In general, welded joints were more resistant to longitudinally growing fatigue cracks than the parent material at threshold Delta K values, when beneficial thermal residual stresses decelerated crack growth rate, while the opposite behaviour was observed next to K-C instability, basically due to monotonic fracture modes intercepting fatigue crack growth in weld microstructures. As a result, fatigue crack growth rate (FCGR) predictions were conservative at lower propagation rates and non-conservative for faster cracks. Regarding transverse cracks, intense compressive residual stresses rendered welded plates more fatigue resistant than neat parent plate. However, once the crack tip entered the more brittle weld region substantial acceleration of FCGR occurred due to operative monotonic tensile modes of fracture, leading to non-conservative crack growth rate predictions next to K-C instability. At threshold Delta K values non-conservative predictions values resulted from residual stress relaxation. Improvements on predicted FCGR values were strongly dependent on how the progressive plastic relaxation of the residual stress field was considered.
Resumo:
Inulin was used as a prebiotic to improve quality of skim milk fermented by pure cultures of Lactobacillus acidophilus Lactobacillus rhamnosus Lactobacillus bulgaricus and Bifidobacterium lactis binary co-cultures with Streptococcus thermophilus or a cocktail containing all them Inulin supplementation to pure cultures lowered the generation time with particular concern to S thermophilus and L acidophilus The generation time of all micro-organisms decreased in the following order mono-cultures co-cultures cocktail It was demonstrated a synergism between S thermophilus and the other strains and a bifidogenic effect of inulin Enumerations of L rhamnosus in cocktail markedly decreased compared to co-cultures likely because of greater competition for the same substrates The results of this work highlight the industrial potential of the cocktail mainly in terms of fermentation acceleration (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Maturation of astrocytes, neurons, and oligodendrocytes was studied in serum-free aggregating cell cultures of fetal rat telencephalon by an immunocytochemical approach. Cell type-specific immunofluorescence staining was examined by using antibodies directed against glial fibrillary acidic protein (GFAP) and vimentin, two astroglial markers; neuron-specific enolase (NSE) and neurofilament (NF), two neuronal markers, and galactocerebroside (GC), an oligodendroglial marker. It was found that the cellular maturation in aggregates is characterized by distinct developmental increases in immunoreactivity for GFAP, vimentin, NSE, NF, and GC, and by a subsequent decrease of vimentin-positive structures in more differentiated cultures. These findings are in agreement with observations in vivo, and they corroborate previous biochemical studies of this histotypic culture system. Treatment of very immature cultures with a low dose of epidermal growth factor (EGF, 5 ng/ml) enhanced the developmental increase in GFAP, NSE, NF and GC immunoreactivity, suggesting an acceleration of neuronal and glial maturation. In addition, EGF was found to alter the cellular organization within the aggregates, presumably by influencing cell migration.
Resumo:
CONTEXT GH treatment is effective in children born small for gestational age (SGA); however, its effectiveness and safety in very young SGA children is unknown. OBJECTIVE The aim was to analyze the outcome of very young SGA children treated with GH and followed for 2 yr. The results after 24 months of treatment, compared with a control group without treatment during 12 months followed by 12 months of treatment, are shown. DESIGN We performed a multicenter, controlled, randomized, open trial. SETTINGS The pediatric endocrinology departments of 14 public hospitals in Spain participated in the study. PATIENTS Seventy-six children, aged 2-5 yr born SGA and without catch-up growth, were studied. INTERVENTION Children received GH at 0.06 mg/kg.d for 2 yr (group I) or were followed for 12 months with no treatment and then treated for 12 months (group II). MAIN OUTCOME MEASURES Age, general health status, pubertal stage, bone age, height, weight, biochemical and hormonal analyses, and adverse side effects were determined at biannual check-ups. RESULTS The mean height sd score gain for chronological age in children treated for 24 months (group I) was 2.10, whereas in those treated only during the last 12 months (group II) was 1.43. In both groups, children under 4 yr of age had the greatest gain in growth velocity. No significant acceleration of bone age or side effects related to treatment was seen. CONCLUSION Very young SGA children without spontaneous catch-up growth could benefit from GH treatment because growth was accelerated and no negative side effects were observed.
Resumo:
This paper presents new estimates of total factor productivity growth in Britain for the period 1770-1860. We use a dual technique recently popularized by Hsieh (1999), and argue that the estimates we derive from factor prices are of similar quality to quantity-based calculations. Our results provide further evidence, derived from this independent set of sources, that productivity growth during the British Industrial Revolution was relatively slow. During the years 1770-1800, TFP growth was close to zero, according to our estimates. The period 1800-1830 experienced an acceleration of productivity growth. The Crafts-Harley view of the Industrial Revolution is thus reinforced. We also consider alternative explanations of slow productivity growth, and reject the interpretation that focuses on the introduction of steam as a general purpose technology.
Resumo:
1. Little is known on the occurrence and magnitude of faster than normal (catch-up) growth in response to periods of undernutrition in the wild, and the extent to which different body structures compensate and over what timescales is poorly understood. 2. We investigated catch-up growth in nestling Alpine Swifts, Apus melba, by comparing nestling growth trajectories in response to a naturally occurring 1-week period of inclement weather and undernutrition with growth of nestlings reared in a good year. 3. In response to undernutrition, nestlings exhibited a hierarchy of tissues preservation and compensation, with body mass being restored quickly after the end of the period of undernutrition, acceleration of skeletal growth occurring later in development, and compensation in wing length occurring mostly due to a prolongation of growth and delayed fledging. 4. The effect of undernutrition and subsequent catch-up growth was age-dependent, with older nestlings being more resilient to undernutrition, and in turn having less need to compensate later in the development. 5. This shows that young in a free-living bird population can compensate in body mass and body size for a naturally occurring period of undernutrition, and that the timing and extent of compensation varies with age and between body structures.
Resumo:
Photons participate in many atomic and molecular interactions and changes. Recent biophysical research has shown the induction of ultraweak photons in biological tissue. It is now established that plants, animal and human cells emit a very weak radiation which can be readily detected with an appropriate photomultiplier system. Although the emission is extremely low in mammalian cells, it can be efficiently induced by ultraviolet light. In our studies, we used the differentiation system of human skin fibroblasts from a patient with Xeroderma Pigmentosum of complementation group A in order to test the growth stimulation efficiency of various bone growth factors at concentrations as low as 5 ng/ml of cell culture medium. In additional experiments, the cells were irradiated with a moderate fluence of ultraviolet A. The different batches of growth factors showed various proliferation of skin fibroblasts in culture which could be correlated with the ultraweak photon emission. The growth factors reduced the acceleration of the fibroblast differentiation induced by mitomycin C by a factor of 10-30%. In view that fibroblasts play an essential role in skin aging and wound healing, the fibroblast differentiation system is a very useful tool in order to elucidate the efficacy of growth factors.
Resumo:
The past decade has witnessed explosive growth of mobile subscribers and services. With the purpose of providing better-swifter-cheaper services, radio network optimisation plays a crucial role but faces enormous challenges. The concept of Dynamic Network Optimisation (DNO), therefore, has been introduced to optimally and continuously adjust network configurations, in response to changes in network conditions and traffic. However, the realization of DNO has been seriously hindered by the bottleneck of optimisation speed performance. An advanced distributed parallel solution is presented in this paper, as to bridge the gap by accelerating the sophisticated proprietary network optimisation algorithm, while maintaining the optimisation quality and numerical consistency. The ariesoACP product from Arieso Ltd serves as the main platform for acceleration. This solution has been prototyped, implemented and tested. Real-project based results exhibit a high scalability and substantial acceleration at an average speed-up of 2.5, 4.9 and 6.1 on a distributed 5-core, 9-core and 16-core system, respectively. This significantly outperforms other parallel solutions such as multi-threading. Furthermore, augmented optimisation outcome, alongside high correctness and self-consistency, have also been fulfilled. Overall, this is a breakthrough towards the realization of DNO.
Resumo:
We construct and simulate a theoretical model in order to explain particular historical experiences in which inflation acceleration apparently helped to spur a period of economic growth. Government financed expenditures affect positively the produtivity growth in this model so that the distortionary effect of inflation tax is compensated by the productive effect of public expenditures. We show that for some interval of money creation rates there is an equilibrium where money is valued and where steady state physica1 capital grows with inflation. It is a1so shown that zero inflation and growth maximization are never the optimal policies.
Resumo:
a theoretical model is constructed in order to explain particular historical experiences in which inflation acceleration apparently helped to spur a period of economic growth. Government financed expenditures affect positively the productivity growth in this model so that the distortionary effect of inflation tax is compensated by the productive effect of public expenditures. We show that for some interval of money creation rates there is an equilibrium where money is valued and where steady state physical capital grows with inflation. It is also shown that zero inflation and growth maximization are never the optimal policies.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Several biological phenomena have a behavior over time mathematically characterized by a strong increasing function in the early stages of development, then by a less pronounced growth, sometimes showing stability. The separation between these phases is very important to the researcher, since the maintenance of a less productive phase results in uneconomical activity. In this report we present methods of determining critical points in logistic functions that separate the early stages of growth from the asymptotic phase, with the aim of establishing a stopping critical point in the growth and on this basis determine differences in treatments. The logistic growth model is fitted to experimental data of imbibition of arariba seeds (Centrolobium tomentosum). To determine stopping critical points the following methods were used: i) accelerating growth function, ii) tangent at the inflection point, iii) segmented regression; iv) modified segmented regression; v) non-significant difference; and vi) non-significant difference by simulation. The analysis of variance of the abscissas and ordinates of the breakpoints was performed with the objective of comparing treatments and methods used to determine the critical points. The methods of segmented regression and of the tangent at the inflection point lead to early stopping points, in comparison with other methods, with proportions ordinate/asymptote lower than 0.90. The non-significant difference method by simulation had higher values of abscissas for stopping point, with an average proportion ordinate/asymptote equal to 0.986. An intermediate proportion of 0.908 was observed for the acceleration function method.
Resumo:
We study the phenomenon of unlimited energy growth for a classical particle moving in the annular billiard. The model is considered under two different geometrical situations: static and breathing boundaries. We show that when the dynamics is chaotic for the static case, the introduction of a time-dependent perturbation allows that the particle experiences the phenomenon of Fermi acceleration even when the oscillations are periodic.
Resumo:
The unlimited energy growth ( Fermi acceleration) of a classical particle moving in a billiard with a parameter-dependent boundary oscillating in time is numerically studied. The shape of the boundary is controlled by a parameter and the billiard can change from a focusing one to a billiard with dispersing pieces of the boundary. The complete and simplified versions of the model are considered in the investigation of the conjecture that Fermi acceleration will appear in the time-dependent case when the dynamics is chaotic for the static boundary. Although this conjecture holds for the simplified version, we have not found evidence of Fermi acceleration for the complete model with a breathing boundary. When the breathing symmetry is broken, Fermi acceleration appears in the complete model.