986 resultados para gravitational waves


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational-wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95% confidence level upper limits have been computed assuming both that polarization parameters are completely unknown and that they are known with some uncertainty, as derived from x-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of 2 below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at 0T > 16 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future generations of GHz-range detectors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The most promising concept for low frequency (millihertz to hertz) gravitational wave observatories are laser interferometric detectors in space. It is usually assumed that the noise floor for such a detector is dominated by optical shot noise in the signal readout. For this to be true, a careful balance of mission parameters is crucial to keep all other parasitic disturbances below shot noise. We developed a web application that uses over 30 input parameters and considers many important technical noise sources and noise suppression techniques to derive a realistic position noise budget. It optimizes free parameters automatically and generates a detailed report on all individual noise contributions. Thus one can easily explore the entire parameter space and design a realistic gravitational wave observatory. In this document we describe the different parameters, present all underlying calculations, and compare the final observatory's sensitivity with astrophysical sources of gravitational waves. We use as an example parameters currently assumed to be likely applied to a space mission proposed to be launched in 2034 by the European Space Agency. The web application itself is publicly available on the Internet at http://spacegravity.org/designer. Future versions of the web application will incorporate the frequency dependence of different noise sources and include a more detailed model of the observatory's residual acceleration noise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anisotropic emission of gravitational waves (GWs) from inspiralling compact binaries leads to the loss of linear momentum and hence gravitational recoil of the system. The loss rate of linear momentum in the far-zone of the source (a nonspinning binary system of black holes in quasicircular orbit) is investigated at the 2.5 post-Newtonian (PN) order and used to provide an analytical expression in harmonic coordinates for the 2.5PN accurate recoil velocity of the binary accumulated in the inspiral phase. The maximum recoil velocity of the binary system at the end of its inspiral phase (i.e at the innermost stable circular orbit (ISCO)) estimated by the 2.5PN formula is of the order of 4 km s(-1) which is smaller than the 2PN estimate of 22 km s(-1). Going beyond inspiral, we also provide an estimate of the more important contribution to the recoil velocity from the plunge phase. The maximum recoil velocity at the end of the plunge, involving contributions both from inspiral and plunge phase, for a binary with symmetric mass ratio nu = 0.2 is of the order of 182 km s(-1).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various families of exact solutions to the Einstein and Einstein-Maxwell field equations of General Relativity are treated for situations of sufficient symmetry that only two independent variables arise. The mathematical problem then reduces to consideration of sets of two coupled nonlinear differential equations.

The physical situations in which such equations arise include: a) the external gravitational field of an axisymmetric, uncharged steadily rotating body, b) cylindrical gravitational waves with two degrees of freedom, c) colliding plane gravitational waves, d) the external gravitational and electromagnetic fields of a static, charged axisymmetric body, and e) colliding plane electromagnetic and gravitational waves. Through the introduction of suitable potentials and coordinate transformations, a formalism is presented which treats all these problems simultaneously. These transformations and potentials may be used to generate new solutions to the Einstein-Maxwell equations from solutions to the vacuum Einstein equations, and vice-versa.

The calculus of differential forms is used as a tool for generation of similarity solutions and generalized similarity solutions. It is further used to find the invariance group of the equations; this in turn leads to various finite transformations that give new, physically distinct solutions from old. Some of the above results are then generalized to the case of three independent variables.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis consists of three separate studies of roles that black holes might play in our universe.

In the first part we formulate a statistical method for inferring the cosmological parameters of our universe from LIGO/VIRGO measurements of the gravitational waves produced by coalescing black-hole/neutron-star binaries. This method is based on the cosmological distance-redshift relation, with "luminosity distances" determined directly, and redshifts indirectly, from the gravitational waveforms. Using the current estimates of binary coalescence rates and projected "advanced" LIGO noise spectra, we conclude that by our method the Hubble constant should be measurable to within an error of a few percent. The errors for the mean density of the universe and the cosmological constant will depend strongly on the size of the universe, varying from about 10% for a "small" universe up to and beyond 100% for a "large" universe. We further study the effects of random gravitational lensing and find that it may strongly impair the determination of the cosmological constant.

In the second part of this thesis we disprove a conjecture that black holes cannot form in an early, inflationary era of our universe, because of a quantum-field-theory induced instability of the black-hole horizon. This instability was supposed to arise from the difference in temperatures of any black-hole horizon and the inflationary cosmological horizon; it was thought that this temperature difference would make every quantum state that is regular at the cosmological horizon be singular at the black-hole horizon. We disprove this conjecture by explicitly constructing a quantum vacuum state that is everywhere regular for a massless scalar field. We further show that this quantum state has all the nice thermal properties that one has come to expect of "good" vacuum states, both at the black-hole horizon and at the cosmological horizon.

In the third part of the thesis we study the evolution and implications of a hypothetical primordial black hole that might have found its way into the center of the Sun or any other solar-type star. As a foundation for our analysis, we generalize the mixing-length theory of convection to an optically thick, spherically symmetric accretion flow (and find in passing that the radial stretching of the inflowing fluid elements leads to a modification of the standard Schwarzschild criterion for convection). When the accretion is that of solar matter onto the primordial hole, the rotation of the Sun causes centrifugal hangup of the inflow near the hole, resulting in an "accretion torus" which produces an enhanced outflow of heat. We find, however, that the turbulent viscosity, which accompanies the convective transport of this heat, extracts angular momentum from the inflowing gas, thereby buffering the torus into a lower luminosity than one might have expected. As a result, the solar surface will not be influenced noticeably by the torus's luminosity until at most three days before the Sun is finally devoured by the black hole. As a simple consequence, accretion onto a black hole inside the Sun cannot be an answer to the solar neutrino puzzle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent observations of the temperature anisotropies of the cosmic microwave background (CMB) favor an inflationary paradigm in which the scale factor of the universe inflated by many orders of magnitude at some very early time. Such a scenario would produce the observed large-scale isotropy and homogeneity of the universe, as well as the scale-invariant perturbations responsible for the observed (10 parts per million) anisotropies in the CMB. An inflationary epoch is also theorized to produce a background of gravitational waves (or tensor perturbations), the effects of which can be observed in the polarization of the CMB. The E-mode (or parity even) polarization of the CMB, which is produced by scalar perturbations, has now been measured with high significance. Con- trastingly, today the B-mode (or parity odd) polarization, which is sourced by tensor perturbations, has yet to be observed. A detection of the B-mode polarization of the CMB would provide strong evidence for an inflationary epoch early in the universe’s history.

In this work, we explore experimental techniques and analysis methods used to probe the B- mode polarization of the CMB. These experimental techniques have been used to build the Bicep2 telescope, which was deployed to the South Pole in 2009. After three years of observations, Bicep2 has acquired one of the deepest observations of the degree-scale polarization of the CMB to date. Similarly, this work describes analysis methods developed for the Bicep1 three-year data analysis, which includes the full data set acquired by Bicep1. This analysis has produced the tightest constraint on the B-mode polarization of the CMB to date, corresponding to a tensor-to-scalar ratio estimate of r = 0.04±0.32, or a Bayesian 95% credible interval of r < 0.70. These analysis methods, in addition to producing this new constraint, are directly applicable to future analyses of Bicep2 data. Taken together, the experimental techniques and analysis methods described herein promise to open a new observational window into the inflationary epoch and the initial conditions of our universe.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the quest to develop viable designs for third-generation optical interferometric gravitational-wave detectors, one strategy is to monitor the relative momentum or speed of the test-mass mirrors, rather than monitoring their relative position. The most straightforward design for a speed-meter interferometer that accomplishes this is described and analyzed in Chapter 2. This design (due to Braginsky, Gorodetsky, Khalili, and Thorne) is analogous to a microwave-cavity speed meter conceived by Braginsky and Khalili. A mathematical mapping between the microwave speed meter and the optical interferometric speed meter is developed and used to show (in accord with the speed being a quantum nondemolition observable) that in principle the interferometric speed meter can beat the gravitational-wave standard quantum limit (SQL) by an arbitrarily large amount, over an arbitrarily wide range of frequencies . However, in practice, to reach or beat the SQL, this specific speed meter requires exorbitantly high input light power. The physical reason for this is explored, along with other issues such as constraints on performance due to optical dissipation.

Chapter 3 proposes a more sophisticated version of a speed meter. This new design requires only a modest input power and appears to be a fully practical candidate for third-generation LIGO. It can beat the SQL (the approximate sensitivity of second-generation LIGO interferometers) over a broad range of frequencies (~ 10 to 100 Hz in practice) by a factor h/hSQL ~ √W^(SQL)_(circ)/Wcirc. Here Wcirc is the light power circulating in the interferometer arms and WSQL ≃ 800 kW is the circulating power required to beat the SQL at 100 Hz (the LIGO-II power). If squeezed vacuum (with a power-squeeze factor e-2R) is injected into the interferometer's output port, the SQL can be beat with a much reduced laser power: h/hSQL ~ √W^(SQL)_(circ)/Wcirce-2R. For realistic parameters (e-2R ≃ 10 and Wcirc ≃ 800 to 2000 kW), the SQL can be beat by a factor ~ 3 to 4 from 10 to 100 Hz. [However, as the power increases in these expressions, the speed meter becomes more narrow band; additional power and re-optimization of some parameters are required to maintain the wide band.] By performing frequency-dependent homodyne detection on the output (with the aid of two kilometer-scale filter cavities), one can markedly improve the interferometer's sensitivity at frequencies above 100 Hz.

Chapters 2 and 3 are part of an ongoing effort to develop a practical variant of an interferometric speed meter and to combine the speed meter concept with other ideas to yield a promising third- generation interferometric gravitational-wave detector that entails low laser power.

Chapter 4 is a contribution to the foundations for analyzing sources of gravitational waves for LIGO. Specifically, it presents an analysis of the tidal work done on a self-gravitating body (e.g., a neutron star or black hole) in an external tidal field (e.g., that of a binary companion). The change in the mass-energy of the body as a result of the tidal work, or "tidal heating," is analyzed using the Landau-Lifshitz pseudotensor and the local asymptotic rest frame of the body. It is shown that the work done on the body is gauge invariant, while the body-tidal-field interaction energy contained within the body's local asymptotic rest frame is gauge dependent. This is analogous to Newtonian theory, where the interaction energy is shown to depend on how one localizes gravitational energy, but the work done on the body is independent of that localization. These conclusions play a role in analyses, by others, of the dynamics and stability of the inspiraling neutron-star binaries whose gravitational waves are likely to be seen and studied by LIGO.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We know from the CMB and observations of large-scale structure that the universe is extremely flat, homogenous, and isotropic. The current favored mechanism for generating these characteristics is inflation, a theorized period of exponential expansion of the universe that occurred shortly after the Big Bang. Most theories of inflation generically predict a background of stochastic gravitational waves. These gravitational waves should leave their unique imprint on the polarization of the CMB via Thompson scattering. Scalar perturbations of the metric will cause a pattern of polarization with no curl (E-mode). Tensor perturbations (gravitational waves) will cause a unique pattern of polarization on the CMB that includes a curl component (B-mode). A measurement of the ratio of the tensor to scalar perturbations (r) tells us the energy scale of inflation. Recent measurements by the BICEP2 team detect the B-mode spectrum with a tensor-to-scalar ratio of r = 0.2 (+0.05, −0.07). An independent confirmation of this result is the next step towards understanding the inflationary universe.

This thesis describes my work on a balloon-borne polarimeter called SPIDER, which is designed to illuminate the physics of the early universe through measurements of the cosmic microwave background polarization. SPIDER consists of six single-frequency, on-axis refracting telescopes contained in a shared-vacuum liquid-helium cryostat. Its large format arrays of millimeter-wave detectors and tight control of systematics will give it unprecedented sensitivity. This thesis describes how the SPIDER detectors are characterized and calibrated for flight, as well as how the systematics requirements for the SPIDER system are simulated and measured.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Advanced LIGO and Virgo experiments are poised to detect gravitational waves (GWs) directly for the first time this decade. The ultimate prize will be joint observation of a compact binary merger in both gravitational and electromagnetic channels. However, GW sky locations that are uncertain by hundreds of square degrees will pose a challenge. I describe a real-time detection pipeline and a rapid Bayesian parameter estimation code that will make it possible to search promptly for optical counterparts in Advanced LIGO. Having analyzed a comprehensive population of simulated GW sources, we describe the sky localization accuracy that the GW detector network will achieve as each detector comes online and progresses toward design sensitivity. Next, in preparation for the optical search with the intermediate Palomar Transient Factory (iPTF), we have developed a unique capability to detect optical afterglows of gamma-ray bursts (GRBs) detected by the Fermi Gamma-ray Burst Monitor (GBM). Its comparable error regions offer a close parallel to the Advanced LIGO problem, but Fermi's unique access to MeV-GeV photons and its near all-sky coverage may allow us to look at optical afterglows in a relatively unexplored part of the GRB parameter space. We present the discovery and broadband follow-up observations (X-ray, UV, optical, millimeter, and radio) of eight GBM-IPTF afterglows. Two of the bursts (GRB 130702A / iPTF13bxl and GRB 140606B / iPTF14bfu) are at low redshift (z=0.145 and z = 0.384, respectively), are sub-luminous with respect to "standard" cosmological bursts, and have spectroscopically confirmed broad-line type Ic supernovae. These two bursts are possibly consistent with mildly relativistic shocks breaking out from the progenitor envelopes rather than the standard mechanism of internal shocks within an ultra-relativistic jet. On a technical level, the GBM--IPTF effort is a prototype for locating and observing optical counterparts of GW events in Advanced LIGO with the Zwicky Transient Facility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Laser interferometer gravitational wave observatory (LIGO) consists of two complex large-scale laser interferometers designed for direct detection of gravitational waves from distant astrophysical sources in the frequency range 10Hz - 5kHz. Direct detection of space-time ripples will support Einstein's general theory of relativity and provide invaluable information and new insight into physics of the Universe.

Initial phase of LIGO started in 2002, and since then data was collected during six science runs. Instrument sensitivity was improving from run to run due to the effort of commissioning team. Initial LIGO has reached designed sensitivity during the last science run, which ended in October 2010.

In parallel with commissioning and data analysis with the initial detector, LIGO group worked on research and development of the next generation detectors. Major instrument upgrade from initial to advanced LIGO started in 2010 and lasted till 2014.

This thesis describes results of commissioning work done at LIGO Livingston site from 2013 until 2015 in parallel with and after the installation of the instrument. This thesis also discusses new techniques and tools developed at the 40m prototype including adaptive filtering, estimation of quantization noise in digital filters and design of isolation kits for ground seismometers.

The first part of this thesis is devoted to the description of methods for bringing interferometer to the linear regime when collection of data becomes possible. States of longitudinal and angular controls of interferometer degrees of freedom during lock acquisition process and in low noise configuration are discussed in details.

Once interferometer is locked and transitioned to low noise regime, instrument produces astrophysics data that should be calibrated to units of meters or strain. The second part of this thesis describes online calibration technique set up in both observatories to monitor the quality of the collected data in real time. Sensitivity analysis was done to understand and eliminate noise sources of the instrument.

Coupling of noise sources to gravitational wave channel can be reduced if robust feedforward and optimal feedback control loops are implemented. The last part of this thesis describes static and adaptive feedforward noise cancellation techniques applied to Advanced LIGO interferometers and tested at the 40m prototype. Applications of optimal time domain feedback control techniques and estimators to aLIGO control loops are also discussed.

Commissioning work is still ongoing at the sites. First science run of advanced LIGO is planned for September 2015 and will last for 3-4 months. This run will be followed by a set of small instrument upgrades that will be installed on a time scale of few months. Second science run will start in spring 2016 and last for about 6 months. Since current sensitivity of advanced LIGO is already more than factor of 3 higher compared to initial detectors and keeps improving on a monthly basis, upcoming science runs have a good chance for the first direct detection of gravitational waves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Precision polarimetry of the cosmic microwave background (CMB) has become a mainstay of observational cosmology. The ΛCDM model predicts a polarization of the CMB at the level of a few μK, with a characteristic E-mode pattern. On small angular scales, a B-mode pattern arises from the gravitational lensing of E-mode power by the large scale structure of the universe. Inflationary gravitational waves (IGW) may be a source of B-mode power on large angular scales, and their relative contribution to primordial fluctuations is parameterized by a tensor-to-scalar ratio r. BICEP2 and Keck Array are a pair of CMB polarimeters at the South Pole designed and built for optimal sensitivity to the primordial B-mode peak around multipole l ~ 100. The BICEP2/Keck Array program intends to achieve a sensitivity to r ≥ 0.02. Auxiliary science goals include the study of gravitational lensing of E-mode into B-mode signal at medium angular scales and a high precision survey of Galactic polarization. These goals require low noise and tight control of systematics. We describe the design and calibration of the instrument. We also describe the analysis of the first three years of science data. BICEP2 observes a significant B-mode signal at 150 GHz in excess of the level predicted by the lensed-ΛCDM model, and Keck Array confirms the excess signal at > 5σ. We combine the maps from the two experiments to produce 150 GHz Q and U maps which have a depth of 57 nK deg (3.4 μK arcmin) over an effective area of 400 deg2 for an equivalent survey weight of 248000 μK2. We also show preliminary Keck Array 95 GHz maps. A joint analysis with the Planck collaboration reveals that much of BICEP2/Keck Array's observed 150 GHz signal at low l is more likely a Galactic dust foreground than a measurement of r. Marginalizing over dust and r, lensing B-modes are detected at 7.0σ significance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Part I, we construct a symmetric stress-energy-momentum pseudo-tensor for the gravitational fields of Brans-Dicke theory, and use this to establish rigorously conserved integral expressions for energy-momentum Pi and angular momentum Jik. Application of the two-dimensional surface integrals to the exact static spherical vacuum solution of Brans leads to an identification of our conserved mass with the active gravitational mass. Application to the distant fields of an arbitrary stationary source reveals that Pi and Jik have the same physical interpretation as in general relativity. For gravitational waves whose wavelength is small on the scale of the background radius of curvature, averaging over several wavelengths in the Brill-Hartle-Isaacson manner produces a stress-energy-momentum tensor for gravitational radiation which may be used to calculate the changes in Pi and Jik of their source.

In Part II, we develop strong evidence in favor of a conjecture by Penrose--that, in the Brans-Dicke theory, relativistic gravitational collapse in three dimensions produce black holes identical to those of general relativity. After pointing out that any black hole solution of general relativity also satisfies Brans-Dicke theory, we establish the Schwarzschild and Kerr geometries as the only possible spherical and axially symmetric black hole exteriors, respectively. Also, we show that a Schwarzschild geometry is necessarily formed in the collapse of an uncharged sphere.

Appendices discuss relationships among relativistic gravity theories and an example of a theory in which black holes do not exist.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fast radio bursts (FRBs), a novel type of radio pulse, whose physics is not yet understood at all. Only a handful of FRBs had been detected when we started this project. Taking account of the scant observations, we put physical constraints on FRBs. We excluded proposals of a galactic origin for their extraordinarily high dispersion measures (DM), in particular stellar coronas and HII regions. Therefore our work supports an extragalactic origin for FRBs. We show that the resolved scattering tail of FRB 110220 is unlikely to be due to propagation through the intergalactic plasma. Instead the scattering is probably caused by the interstellar medium in the FRB's host galaxy, and indicates that this burst sits in the central region of that galaxy. Pulse durations of order $\ms$ constrain source sizes of FRBs implying enormous brightness temperatures and thus coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period. When we worked on FRBs, it was unclear whether they were genuine astronomical signals as distinct from `perytons', clearly terrestrial radio bursts, sharing some common properties with FRBs. Recently, in April 2015, astronomers discovered that perytons were emitted by microwave ovens. Radio chirps similar to FRBs were emitted when their doors opened while they were still heating. Evidence for the astronomical nature of FRBs has strengthened since our paper was published. Some bursts have been found to show linear and circular polarizations and Faraday rotation of the linear polarization has also been detected. I hope to resume working on FRBs in the near future. But after we completed our FRB paper, I decided to pause this project because of the lack of observational constraints.

The pulsar triple system, J0733+1715, has its orbital parameters fitted to high accuracy owing to the precise timing of the central $\ms$ pulsar. The two orbits are highly hierarchical, namely $P_{\mathrm{orb,1}}\ll P_{\mathrm{orb,2}}$, where 1 and 2 label the inner and outer white dwarf (WD) companions respectively. Moreover, their orbital planes almost coincide, providing a unique opportunity to study secular interaction associated purely with eccentricity beyond the solar system. Secular interaction only involves effect averaged over many orbits. Thus each companion can be represented by an elliptical wire with its mass distributed inversely proportional to its local orbital speed. Generally there exists a mutual torque, which vanishes only when their apsidal lines are parallel or anti-parallel. To maintain either mode, the eccentricity ratio, $e_1/e_2$, must be of the proper value, so that both apsidal lines precess together. For J0733+1715, $e_1\ll e_2$ for the parallel mode, while $e_1\gg e_2$ for the anti-parallel one. We show that the former precesses $\sim 10$ times slower than the latter. Currently the system is dominated by the parallel mode. Although only a little anti-parallel mode survives, both eccentricities especially $e_1$ oscillate on $\sim 10^3\yr$ timescale. Detectable changes would occur within $\sim 1\yr$. We demonstrate that the anti-parallel mode gets damped $\sim 10^4$ times faster than its parallel brother by any dissipative process diminishing $e_1$. If it is the tidal damping in the inner WD, we proceed to estimate its tidal quantity parameter ($Q$) to be $\sim 10^6$, which was poorly constrained by observations. However, tidal damping may also happen during the preceding low-mass X-ray binary (LMXB) phase or hydrogen thermal nuclear flashes. But, in both cases, the inner companion fills its Roche lobe and probably suffers mass/angular momentum loss, which might cause $e_1$ to grow rather than decay.

Several pairs of solar system satellites occupy mean motion resonances (MMRs). We divide these into two groups according to their proximity to exact resonance. Proximity is measured by the existence of a separatrix in phase space. MMRs between Io-Europa, Europa-Ganymede and Enceladus-Dione are too distant from exact resonance for a separatrix to appear. A separatrix is present only in the phase spaces of the Mimas-Tethys and Titan-Hyperion MMRs and their resonant arguments are the only ones to exhibit substantial librations. When a separatrix is present, tidal damping of eccentricity or inclination excites overstable librations that can lead to passage through resonance on the damping timescale. However, after investigation, we conclude that the librations in the Mimas-Tethys and Titan-Hyperion MMRs are fossils and do not result from overstability.

Rubble piles are common in the solar system. Monolithic elements touch their neighbors in small localized areas. Voids occupy a significant fraction of the volume. In a fluid-free environment, heat cannot conduct through voids; only radiation can transfer energy across them. We model the effective thermal conductivity of a rubble pile and show that it is proportional the square root of the pressure, $P$, for $P\leq \epsy^3\mu$ where $\epsy$ is the material's yield strain and $\mu$ its shear modulus. Our model provides an excellent fit to the depth dependence of the thermal conductivity in the top $140\,\mathrm{cm}$ of the lunar regolith. It also offers an explanation for the low thermal inertias of rocky asteroids and icy satellites. Lastly, we discuss how rubble piles slow down the cooling of small bodies such as asteroids.

Electromagnetic (EM) follow-up observations of gravitational wave (GW) events will help shed light on the nature of the sources, and more can be learned if the EM follow-ups can start as soon as the GW event becomes observable. In this paper, we propose a computationally efficient time-domain algorithm capable of detecting gravitational waves (GWs) from coalescing binaries of compact objects with nearly zero time delay. In case when the signal is strong enough, our algorithm also has the flexibility to trigger EM observation {\it before} the merger. The key to the efficiency of our algorithm arises from the use of chains of so-called Infinite Impulse Response (IIR) filters, which filter time-series data recursively. Computational cost is further reduced by a template interpolation technique that requires filtering to be done only for a much coarser template bank than otherwise required to sufficiently recover optimal signal-to-noise ratio. Towards future detectors with sensitivity extending to lower frequencies, our algorithm's computational cost is shown to increase rather insignificantly compared to the conventional time-domain correlation method. Moreover, at latencies of less than hundreds to thousands of seconds, this method is expected to be computationally more efficient than the straightforward frequency-domain method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

引力波的存在是爱因斯坦在广义相对论理论中提出的一个重要预言。由于目前技术水平的限制,无法在实验室产生足以被探测到的引力波,因此宇宙中大量的大质量剧烈活动的天体成为科学家研究引力波的首选,从而诞生了引力波天文学.引力波探测将开启研究宇宙的新窗口,是继电磁辐射、宇宙线和中微子探测后探索宇宙奥秘的又一重要手段,对天文学研究有着极为重要的意义.新一代应用了高灵敏度的迈克耳逊干涉仪装置的长基线引力波探测仪正在建造中.该综述从引力波理论出发,阐述了目前研究较多的可探测引力波源,给出了目前观测上的最新进展,并展望了今后