873 resultados para glucose transporter 1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elevation in the rate of glucose transport in polyoma virus-infected mouse fibroblasts was dependent upon phosphatidylinositol 3-kinase (PI 3-kinase; EC 2.7.1.137) binding to complexes of middle tumor antigen (middle T) and pp60c-src. Wild-type polyoma virus infection led to a 3-fold increase in the rate of 2-deoxyglucose (2DG) uptake, whereas a weakly transforming polyoma virus mutant that encodes a middle T capable of activating pp60c-src but unable to promote binding of PI 3-kinase induced little or no change in the rate of 2DG transport. Another transformation-defective mutant encoding a middle T that retains functional binding of both pp60c-src and PI 3-kinase but is incapable of binding Shc (a protein involved in activation of Ras) induced 2DG transport to wild-type levels. Wortmannin (< or = 100 nM), a known inhibitor of PI 3-kinase, blocked elevation of glucose transport in wild-type virus-infected cells. In contrast to serum stimulation, which led to increased levels of glucose transporter 1 (GLUT1) RNA and protein, wild-type virus infection induced no significant change in levels of either GLUT1 RNA or protein. Nevertheless, virus-infected cells did show increases in GLUT1 protein in plasma membranes. These results point to a posttranslational mechanism in the elevation of glucose transport by polyoma virus middle T involving activation of PI 3-kinase and translocation of GLUT1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have generated herpes simplex virus (HSV) vectors vIE1GT and v alpha 4GT bearing the GLUT-1 isoform of the rat brain glucose transporter (GT) under the control of the human cytomegalovirus ie1 and HSV alpha 4 promoters, respectively. We previously reported that such vectors enhance glucose uptake in hippocampal cultures and the hippocampus. In this study we demonstrate that such vectors can maintain neuronal metabolism and reduce the extent of neuron loss in cultures after a period of hypoglycemia. Microinfusion of GT vectors into the rat hippocampus also reduces kainic acid-induced seizure damage in the CA3 cell field. Furthermore, delivery of the vector even after onset of the seizure is protective, suggesting that HSV-mediated gene transfer for neuroprotection need not be carried out in anticipation of neurologic crises. Using the bicistronic vector v alpha 22 beta gal alpha 4GT, which coexpresses both GT and the Escherichia coli lacZ marker gene, we further demonstrate an inverse correlation between the extent of vector expression in the dentate and the amount of CA3 damage resulting from the simultaneous delivery of kainic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acute effects of contraction and insulin on the glucose transport and GLUT4 glucose transporter translocation were investigated in rat soleus muscles by using a 3-O-methylglucose transport assay and the sensitive exofacial labeling technique with the impermeant photoaffinity reagent 2-N-4-(1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis(D-mannose-4-y loxy)-2- propylamine (ATB-BMPA), respectively. Addition of wortmannin, which inhibits phosphatidylinositol 3-kinase, reduced insulin-stimulated glucose transport (8.8 +/- 0.5 mumol per ml per h vs. 1.4 +/- 0.1 mumol per ml per h) and GLUT4 translocation [2.79 +/- 0.20 pmol/g (wet muscle weight) vs. 0.49 +/- 0.05 pmol/g (wet muscle weight)]. In contrast, even at a high concentration (1 microM), wortmannin had no effect on contraction-mediated glucose uptake (4.4 +/- 0.1 mumol per ml per h vs. 4.1 +/- 0.2 mumol per ml per h) and GLUT4 cell surface content [1.75 +/- 0.16 pmol/g (wet muscle weight) vs. 1.52 +/- 0.16 pmol/g (wet muscle weight)]. Contraction-mediated translocation of the GLUT4 transporters to the cell surface was closely correlated with the glucose transport activity and could account fully for the increment in glucose uptake after contraction. The combined effects of contraction and maximal insulin stimulation were greater than either stimulation alone on glucose transport activity (11.5 +/- 0.4 mumol per ml per h vs. 5.6 +/- 0.2 mumol per ml per h and 9.0 +/- 0.2 mumol per ml per h) and on GLUT4 translocation [4.10 +/- 0.20 pmol/g (wet muscle weight) vs. 1.75 +/- 0.25 pmol/g (wet muscle weight) and 3.15 +/- 0.18 pmol/g (wet muscle weight)]. The results provide evidence that contraction stimulates translocation of GLUT4 in skeletal muscle through a mechanism distinct from that of insulin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesangial cells subject to high extracellular glucose concentrations, as occur in hyperglycaemic states, are unable to down regulate glucose influx, resulting in intracellular activation of deleterious biochemical pathways. A high expression of GLUT1 participates in the development of diabetic glomerulopathy. Variants in the gene encoding GLUT1 (SLC2A1) have been associated to this diabetic complication. The aim of this study was to test whether polymorphisms in SLC2A1 confer susceptibility to diabetic nephropathy (DN) in Brazilian type 1 diabetes patients. Four polymorphisms (rs3820589, rs1385129, rs841847 and rs841848) were genotyped in a Brazilian cohort comprised of 452 patients. A prospective analysis was performed in 155 patients. Mean duration of follow-up was 5.6±2.4years and the incidence of renal events was 18.0%. The rs3820589 presented an inverse association with the prevalence of incipient DN (OR: 0.36, 95% CI: 0.16 - 0.80, p=0.01) and with progression to renal events (HR: 0.20; 95% CI: 0.03 - 0.70; p=0.009). AGGT and AGAC haplotypes were associated with the prevalence of incipient DN and the AGAC haplotype was also associated with the prevalence of established/advanced DN. In conclusion, rs3820589 in the SLC2A1 gene modulates the risk to DN in Brazilian patients with inadequate type 1 diabetes control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present work was to assess the role of monocarboxylate transporters (MCTs), namely MCT1 and MCT4 as well as MCT/CD147 co-expression in gastric tissues and evaluate their clinico-pathological significance in gastric carcinoma. For that, we analysed the immunohistochemical expression of MCT1, MCT4 and CD147, in a large series of gastric samples, including non-neoplastic, tumour and metastatic tissues. A significant decrease in MCT4 plasma membrane expression was observed from non-neoplastic to gastric primary malignant tissues and to lymph-node metastasis and both MCT1 and MCT4 correlated with CD147. Importantly, both MCT4 and CD147 were more frequently expressed in Lauren`s intestinal-type tumours and MCT1/CD147 co-expression was associated with advanced gastric carcinoma, Lauren`s intestinal type, TNM staging and lymph-node metastasis. Our results showed that the prognostic value of CD147 was associated with MCTI co-expression in gastric cancer cells, supporting the view that CD147 plasma membrane activity is dependent on MCT co-expression. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation to obtain the Master Degree in Biotechnology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Astrocytes exhibit a prominent glycolytic activity, but whether such a metabolic profile is influenced by intercellular communication is unknown. Treatment of primary cultures of mouse cortical astrocytes with the nitric oxide (NO) donor DetaNONOate induced a time-dependent enhancement in the expression of genes encoding various glycolytic enzymes as well as transporters for glucose and lactate. Such an effect was shown to be dependent on the hypoxia-inducible factor HIF-1α, which is stabilized and translocated to the nucleus to exert its transcriptional regulation. NO action was dependent on both the PI3K/Akt/mTOR and MEK signaling pathways and required the activation of COX, but was independent of the soluble guanylate cyclase pathway. Furthermore, as a consequence of NO treatment, an enhanced lactate production and release by astrocytes was evidenced, which was prevented by downregulating HIF-1α. Several brain cell types represent possible sources of NO. It was found that endothelial cells, which express the endothelial NO synthase (eNOS) isoform, constitutively produced the largest amount of NO in culture. When astrocytes were cocultured with primary cultures of brain vascular endothelial cells, stabilization of HIF-1α and an enhancement in glucose transporter-1, hexokinase-2, and monocarboxylate transporter-4 expression as well as increased lactate production was found in astrocytes. This effect was inhibited by the NOS inhibitor l-NAME and was not seen when astrocytes were cocultured with primary cultures of cortical neurons. Our findings suggest that endothelial cell-derived NO participates to the maintenance of a high glycolytic activity in astrocytes mediated by astrocytic HIF-1α activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND:HIV-1-infected patients vary considerably by their response to antiretroviral treatment, drug concentrations in plasma, toxic events, and rate of immune recovery. This variability could have a genetic basis. We did a pharmacogenetics study to analyse the association between response to antiretroviral treatment and allelic variants of several genes. METHODS:In 123 patients, we did PCR analyses of the gene for the multidrug-resistance transporter (MDR1), which codes for P-glycoprotein, of genes coding for isoenzymes of cytochrome P450, CYP3A4, CYP3A5, CYP2D6, and CYP2C19, and of the gene for the chemokine receptor CCR5. We measured concentrations in plasma of the antiretroviral agents efavirenz and nelfinavir by high-performance liquid-chromatography, and measured levels of P-glycoprotein expression, CD4-cell count, and HIV-1 viraemia. FINDINGS: Median drug concentrations in patients with the MDR1 3435 TT, CT, and CC genotypes were at the 30th, 50th, and 75th percentiles, respectively (p=0.0001). In patients with CYP2D6 extensive-metaboliser or poor-metaboliser alleles, median drug concentrations were at percentiles 45 and 62.5, respectively (p=0.04). Patients with the MDR1 TT genotype 6 months after starting treatment had a greater rise in CD4-cell count (257 cells/microL) than patients with the CT (165 cells/microL) and CC (121 cells/microL) genotype (p=0.0048), and the best recovery of naïve CD4-cells. INTERPRETATION:The polymorphism MDR1 3435 C/T predicts immune recovery after initiation of antiretroviral treatment. This finding suggests that P-glycoprotein has an important role in admittance of antiretroviral drugs to restricted compartments in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Excess glucose transport to embryos during diabetic pregnancy causes congenital malformations. The early postimplantation embryo expresses the gene encoding the high-Km GLUT2 (also known as SLC2A2) glucose transporter. The hypothesis tested here is that high-Km glucose transport by GLUT2 causes malformations resulting from maternal hyperglycaemia during diabetic pregnancy. MATERIALS AND METHODS: Glut2 mRNA was assayed by RT-PCR. The Km of embryo glucose transport was determined by measuring 0.5-20 mmol/l 2-deoxy[3H]glucose transport. To test whether the GLUT2 transporter is required for neural tube defects resulting from maternal hyperglycaemia, Glut2+/- mice were crossed and transient hyperglycaemia was induced by glucose injection on day 7.5 of pregnancy. Embryos were recovered on day 10.5, and the incidence of neural tube defects in wild-type, Glut2+/- and Glut2-/- embryos was scored. RESULTS: Early postimplantation embryos expressed Glut2, and expression was unaffected by maternal diabetes. Moreover, glucose transport by these embryos showed Michaelis-Menten kinetics of 16.19 mmol/l, consistent with transport mediated by GLUT2. In pregnancies made hyperglycaemic on day 7.5, neural tube defects were significantly increased in wild-type embryos, but Glut2+/- embryos were partially protected from neural tube defects, and Glut2-/- embryos were completely protected from these defects. The frequency of occurrence of wild-type, Glut2+/- and Glut2-/- embryos suggests that the presence of Glut2 alleles confers a survival advantage in embryos before day 10.5. CONCLUSIONS/INTERPRETATIONS: High-Km glucose transport by the GLUT2 glucose transporter during organogenesis is responsible for the embryopathic effects of maternal diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following a former immunohistochemical study in the rat brain [Arluison, M., Quignon, M., Nguyen, P., Thorens, B., Leloup, C., Penicaud, L. Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. I. Immunohistochemical study. J. Chem. Neuroanat., in press], we have analyzed the ultrastructural localization of GLUT2 in representative and/or critical areas of the forebrain and hindbrain. In agreement with previous results, we observe few oligodendrocyte and astrocyte cell bodies discretely labeled for GLUT2 in large myelinated fibre bundles and most brain areas examined, whereas the reactive glial processes are more numerous and often localized in the vicinity of nerve terminals and/or dendrites or dendritic spines forming synaptic contacts. Only some of them appear closely bound to unlabeled nerve cell bodies and dendrites. Furthermore, the nerve cell bodies prominently immunostained for GLUT2 are scarce in the brain nuclei examined, whereas the labeled dendrites and dendritic spines are relatively numerous and frequently engaged in synaptic junctions. In conformity with the observation of GLUT2-immunoreactive rings at the periphery of numerous nerve cell bodies in various brain areas (see previous paper), we report here that some neuronal perikarya of the dorsal endopiriform nucleus/perirhinal cortex exhibit some patches of immunostaining just below the plasma membrane. However, the presence of many GLUT2-immunoreactive nerve terminals and/or astrocyte processes, some of them being occasionally attached to nerve cell bodies and dendrites, could also explain the pericellular labeling observed. The results here reported support the idea that GLUT2 may be expressed by some cerebral neurones possibly involved in glucose sensing, as previously discussed. However, it is also possible that this transporter participate in the regulation of neurotransmitter release and, perhaps, in the release of glucose by glial cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A defect in glucose sensing of the pancreatic beta-cells has been observed in several animal models of type II diabetes and has been correlated with a reduced gene expression of the glucose transporter type 2 (Glut2). In a transgenic mouse model, expression of Glut2 antisense RNA in pancreatic beta-cells has recently been shown to be associated with an impaired glucose-induced insulin secretion and the development of diabetes. To identify factors that may be involved in the specific decrease of Glut2 in the beta-cells of the diabetic animal, an attempt was made to localize the cis-elements and trans-acting factors involved in the control of Glut2 expression in the endocrine pancreas. It was demonstrated by transient transfection studies that only 338 base pairs (bp) of the murine Glut2 proximal promoter are needed for reporter gene expression in pancreatic islet-derived cell lines, whereas no activity was detected in nonpancreatic cells. Three cis-elements, GTI, GTII, and GTIII, have been identified by DNAse I footprinting and gel retardation experiments within these 338 bp. GTI and GTIII bind distinct but ubiquitously expressed trans-acting factors. On the other hand, nuclear proteins specifically expressed in pancreatic cell lines interact with GTII, and their relative abundance correlates with endogenous Glut2 expression. These GTII-binding factors correspond to nuclear proteins of 180 and 90 kilodaltons as defined by Southwestern analysis. The 180-kilodalton factor is present in pancreatic beta-cell lines but not in an alpha-cell line. Mutation of the GTI or GTIII cis-elements decreases transcriptional activity directed by the 338-bp promoter, whereas mutation of GTII increases gene transcription. Thus negative and positive regulatory sequences are identified within the proximal 338 bp of the GLUT2 promoter and may participate in the islet-specific expression of the gene by binding beta-cell specific trans-acting factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monocarboxylate transporter 1 (MCT1 or SLC16A1) is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1 (+/-) mice developed normally. However, when fed high fat diet (HFD), MCT1 (+/-) mice displayed resistance to development of diet-induced obesity (24.8% lower body weight after 16 weeks of HFD), as well as less insulin resistance and no hepatic steatosis as compared to littermate MCT1 (+/+) mice used as controls. Body composition analysis revealed that reduced weight gain in MCT1 (+/-) mice was due to decreased fat accumulation (50.0% less after 9 months of HFD) notably in liver and white adipose tissue. This phenotype was associated with reduced food intake under HFD (12.3% less over 10 weeks) and decreased intestinal energy absorption (9.6% higher stool energy content). Indirect calorimetry measurements showed ∼ 15% increase in O2 consumption and CO2 production during the resting phase, without any changes in physical activity. Determination of plasma concentrations for various metabolites and hormones did not reveal significant changes in lactate and ketone bodies levels between the two genotypes, but both insulin and leptin levels, which were elevated in MCT1 (+/+) mice when fed HFD, were reduced in MCT1 (+/-) mice under HFD. Interestingly, the enhancement in expression of several genes involved in lipid metabolism in the liver of MCT1 (+/+) mice under high fat diet was prevented in the liver of MCT1 (+/-) mice under the same diet, thus likely contributing to the observed phenotype. These findings uncover the critical role of MCT1 in the regulation of energy balance when animals are exposed to an obesogenic diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have shown that glucose increases the glucose transporter (GLUT2) mRNA expression in the liver in vivo and in vitro. Here we report an analysis of the effects of glucose metabolism on GLUT2 gene expression. GLUT2 mRNA accumulation by glucose was not due to stabilization of its transcript but rather was a direct effect on gene transcription. A proximal fragment of the 5' regulatory region of the mouse GLUT2 gene linked to a reporter gene was transiently transfected into liver GLUT2-expressing cells. Glucose stimulated reporter gene expression in these cells, suggesting that glucose-responsive elements were included within the proximal region of the promoter. A dose-dependent effect of glucose on GLUT2 expression was observed over 10 mM glucose irrespective of the hexokinase isozyme (glucokinase K(m) 16 mM; hexokinase I K(m) 0.01 mM) present in the cell type used. This suggests that the correlation between extracellular glucose and GLUT2 mRNA concentrations is simply a reflection of an activation of glucose metabolism. The mediators and the mechanism responsible for this response remain to be determined. In conclusion, glucose metabolism is required for the proper induction of the GLUT2 gene in the liver and this effect is transcriptionally regulated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ripglut1;glut2-/- mice have no endogenous glucose transporter type 2 (glut2) gene expression but rescue glucose-regulated insulin secretion. Control of glucagon plasma levels is, however, abnormal, with fed hyperglucagonemia and insensitivity to physiological hypo- or hyperglycemia, indicating that GLUT2-dependent sensors control glucagon secretion. Here, we evaluated whether these sensors were located centrally and whether GLUT2 was expressed in glial cells or in neurons. We showed that ripglut1;glut2-/- mice failed to increase plasma glucagon levels following glucoprivation induced either by i.p. or intracerebroventricular 2-deoxy-D-glucose injections. This was accompanied by failure of 2-deoxy-D-glucose injections to activate c-Fos-like immunoreactivity in the nucleus of the tractus solitarius and the dorsal motor nucleus of the vagus. When glut2 was expressed by transgenesis in glial cells but not in neurons of ripglut1;glut2-/- mice, stimulated glucagon secretion was restored as was c-Fos-like immunoreactive labeling in the brainstem. When ripglut1;glut2-/- mice were backcrossed into the C57BL/6 genetic background, fed plasma glucagon levels were also elevated due to abnormal autonomic input to the alpha cells; glucagon secretion was, however, stimulated by hypoglycemic stimuli to levels similar to those in control mice. These studies identify the existence of central glucose sensors requiring glut2 expression in glial cells and therefore functional coupling between glial cells and neurons. These sensors may be activated at different glycemic levels depending on the genetic background.