820 resultados para global virtual engineering teams (GVETs)
Resumo:
Research into software engineering teams focuses on human and social team factors. Social psychology deals with the study of team formation and has found that personality factors and group processes such as team climate are related to team effectiveness. However, there are only a handful of empirical studies dealing with personality and team climate and their relationship to software development team effectiveness. Objective We present aggregate results of a twice replicated quasi-experiment that evaluates the relationships between personality, team climate, product quality and satisfaction in software development teams. Method Our experimental study measures the personalities of team members based on the Big Five personality traits (openness, conscientiousness, extraversion, agreeableness, neuroticism) and team climate factors (participative safety, support for innovation, team vision and task orientation) preferences and perceptions. We aggregate the results of the three studies through a meta-analysis of correlations. The study was conducted with students. Results The aggregation of results from the baseline experiment and two replications corroborates the following findings. There is a positive relationship between all four climate factors and satisfaction in software development teams. Teams whose members score highest for the agreeableness personality factor have the highest satisfaction levels. The results unveil a significant positive correlation between the extraversion personality factor and software product quality. High participative safety and task orientation climate perceptions are significantly related to quality. Conclusions First, more efficient software development teams can be formed heeding personality factors like agreeableness and extraversion. Second, the team climate generated in software development teams should be monitored for team member satisfaction. Finally, aspects like people feeling safe giving their opinions or encouraging team members to work hard at their job can have an impact on software quality. Software project managers can take advantage of these factors to promote developer satisfaction and improve the resulting product.
Resumo:
As a global profession, engineering is integral to the maintenance and further development of society. Indeed, contemporary social problems requiring engineering solutions are not only a consequence of natural and ‘manmade’ disasters (such as the Japanese earthquake or the oil leakage in the Gulf of Mexico) but also encapsulate 21st Century dilemmas around sustainability, poverty and pollution [2,6,7]. Given the complexity of such problems and the constant need for innovation, the demand for engineering education to provide a ready supply of suitably qualified engineering graduates, able to make innovative decisions has never been higher [3,5]. Bearing this in mind, and taking account problems of attrition in engineering education [1,6,4] innovation in the way in which the curriculum is developed and delivered is crucial. CDIO [Conceive, Design, Implement, Operate] provides a potentially ground-breaking solution to such dilemmas. Aimed at equipping students with practical engineering skills supported by the necessary theoretical background, CDIO could potentially change the way engineering is perceived and experienced within higher education. Aston University introduced CDIO into its Mechanical Engineering and Design programmes in October 2011. From its induction, engineering education researchers have ‘shadowed’ the staff responsible for developing and teaching the programme. Utilising an Action Research Design, and adopting a mixed methodological research design, the researchers have worked closely with the teaching team to critically reflect on the processes involved in introducing CDIO into the curriculum. Concurrently, research has been conducted to capture students’ perspectives of CDIO. In evaluating the introduction of CDIO at Aston, the researchers have developed a distinctive research strategy with which to evaluate CDIO. It is the emergent findings from this research that form the basis of this paper. Although early-on in its development CDIO is making a significant difference to engineering education at the University. The paper draws attention to pedagogical, practical and professional issues – discussing each one in turn and in doing so critically analysing the value of CDIO from academic, student and industrial perspectives. The paper concludes by noting that whilst CDIO represents a forwardthinking approach to engineering education, the need for constant innovation in learning and teaching should not be forgotten. Indeed, engineering education needs to put itself at the forefront of pedagogic practice. Providing all-rounded engineers, ready to take on the challenges of the 21st Century!
Resumo:
Educating responsive graduates. Graduate competencies include reliability, communication skills and ability to work in teams. Students using Collaborative technologies adapt to a new working environment, working in teams and using collaborative technologies for learning. Collaborative Technologies were used not simply for delivery of learning but innovatively to supplement and enrich research-based learning, providing a space for active engagement and interaction with resources and team. This promotes the development of responsive ‘intellectual producers’, able to effectively communicate, collaborate and negotiate in complex work environments. Exploiting technologies. Students use ‘new’ technologies to work collaboratively, allowing them to experience the reality of distributed workplaces incorporating both flexibility and ‘real’ time responsiveness. Students are responsible and accountable for individual and group work contributions in a highly transparent and readily accessible workspace. This experience provides a model of an effective learning tool. Navigating uncertainty and complexity. Collaborative technologies allows students to develop critical thinking and reflective skills as they develop a group product. In this forum students build resilience by taking ownership and managing group work, and navigating the uncertainties and complexities of group dynamics as they constructively and professionally engage in team dialogue and learn to focus on the goal of the team task.
Resumo:
Building Information Modelling (BIM) provides a shared source of information about a built asset, which creates a collaborative virtual environment for project teams. Literature suggests that to collaborate efficiently, the relationship between the project team is based on sympathy, obligation, trust and rapport. Communication increases in importance when working collaboratively but effective communication can only be achieved when the stakeholders are willing to act, react, listen and share information. Case study research and interviews with Architecture, Engineering and Construction (AEC) industry experts suggest that synchronous face-to-face communication is project teams’ preferred method, allowing teams to socialise and build rapport, accelerating the creation of trust between the stakeholders. However, virtual unified communication platforms are a close second-preferred option for communication between the teams. Effective methods for virtual communication in professional practice, such as virtual collaboration environments (CVE), that build trust and achieve similar spontaneous responses as face-to-face communication, are necessary to face the global challenges and can be achieved with the right people, processes and technology. This research paper investigates current industry methods for virtual communication within BIM projects and explores the suitability of avatar interaction in a collaborative virtual environment as an alternative to face-to-face communication to enhance collaboration between design teams’ professional practice on a project. Hence, this paper presents comparisons between the effectiveness of these communication methods within construction design teams with results of further experiments conducted to test recommendations for more efficient methods for virtual communication to add value in the workplace between design teams.
Global Manufacturing Virtual Network (GMVN): a revisiting of the concept after three years fieldwork
Resumo:
Based on close examinations of instant message (IM) interactions, this chapter argues that an interactional sociolinguistic approach to computer-mediated language use could provide explanations for phenomena that previously could not be accounted for in computer-mediated discourse analysis (CMDA). Drawing on the theoretical framework of relational work (Locher, 2006), the analysis focuses on non-task oriented talk and its function in forming and establishing communication norms in the team, as well as micro-level phenomena, such as hesitation, backchannel signals and emoticons. The conclusions of this preliminary research suggest that the linguistic strategies used for substituting audio-visual signals are strategically used in discursive functions and have an important role in relational work