924 resultados para global optimization algorithms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The algorithms and graphic user interface software package ?OPT-PROx? are developed to meet food engineering needs related to canned food thermal processing simulation and optimization. The adaptive random search algorithm and its modification coupled with penalty function?s approach, and the finite difference methods with cubic spline approximation are utilized by ?OPT-PROx? package (http://tomakechoice. com/optprox/index.html). The diversity of thermal food processing optimization problems with different objectives and required constraints are solvable by developed software. The geometries supported by the ?OPT-PROx? are the following: (1) cylinder, (2) rectangle, (3) sphere. The mean square error minimization principle is utilized in order to estimate the heat transfer coefficient of food to be heated under optimal condition. The developed user friendly dialogue and used numerical procedures makes the ?OPT-PROx? software useful to food scientists in research and education, as well as to engineers involved in optimization of thermal food processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n this paper, we present a theoretical model based on the detailed balance theory of solar thermophotovoltaic systems comprising multijunction photovoltaic cells, a sunlight concentrator and spectrally selective surfaces. The full system has been defined by means of 2n + 8 variables (being n the number of sub-cells of the multijunction cell). These variables are as follows: the sunlight concentration factor, the absorber cut-off energy, the emitter-to-absorber area ratio, the emitter cut-off energy, the band-gap energy(ies) and voltage(s) of the sub-cells, the reflectivity of the cells' back-side reflector, the emitter-to-cell and cell-to-cell view factors and the emitter-to-cell area ratio. We have used this model for carrying out a multi-variable system optimization by means of a multidimensional direct-search algorithm. This analysis allows to find the set of system variables whose combined effects results in the maximum overall system efficiency. From this analysis, we have seen that multijunction cells are excellent candidates to enhance the system efficiency and the electrical power density. Particularly, multijunction cells report great benefits for systems with a notable presence of optical losses, which are unavoidable in practical systems. Also, we have seen that the use of spectrally selective absorbers, rather than black-body absorbers, allows to achieve higher system efficiencies for both lower concentration and lower emitter-to-absorber area ratio. Finally, we have seen that sun-to-electricity conversion efficiencies above 30% and electrical power densities above 50 W/cm2 are achievable for this kind of systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent improvements of a hierarchical ab initio or de novo approach for predicting both α and β structures of proteins are described. The united-residue energy function used in this procedure includes multibody interactions from a cumulant expansion of the free energy of polypeptide chains, with their relative weights determined by Z-score optimization. The critical initial stage of the hierarchical procedure involves a search of conformational space by the conformational space annealing (CSA) method, followed by optimization of an all-atom model. The procedure was assessed in a recent blind test of protein structure prediction (CASP4). The resulting lowest-energy structures of the target proteins (ranging in size from 70 to 244 residues) agreed with the experimental structures in many respects. The entire experimental structure of a cyclic α-helical protein of 70 residues was predicted to within 4.3 Å α-carbon (Cα) rms deviation (rmsd) whereas, for other α-helical proteins, fragments of roughly 60 residues were predicted to within 6.0 Å Cα rmsd. Whereas β structures can now be predicted with the new procedure, the success rate for α/β- and β-proteins is lower than that for α-proteins at present. For the β portions of α/β structures, the Cα rmsd's are less than 6.0 Å for contiguous fragments of 30–40 residues; for one target, three fragments (of length 10, 23, and 28 residues, respectively) formed a compact part of the tertiary structure with a Cα rmsd less than 6.0 Å. Overall, these results constitute an important step toward the ab initio prediction of protein structure solely from the amino acid sequence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes and classifies various approaches for solving the global illumination problem. The classification aims to show the similarities between different types of algorithms. We introduce the concept of Light Manager, as a central element and mediator between illumination algorithms in a heterogeneous environment of a graphical system. We present results and analysis of the implementation of the described ideas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors would like to express their gratitude to organizations and people that supported this research. Piotr Omenzetter’s work within the Lloyd’s Register Foundation Centre for Safety and Reliability Engineering at the University of Aberdeen is supported by Lloyd’s Register Foundation. The Foundation helps to protect life and property by supporting engineering-related education, public engagement and the application of research. Ben Ryder of Aurecon and Graeme Cummings of HEB Construction assisted in obtaining access to the bridge and information for modelling. Luke Williams and Graham Bougen, undergraduate research students, assisted with testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mobile Network Optimization (MNO) technologies have advanced at a tremendous pace in recent years. And the Dynamic Network Optimization (DNO) concept emerged years ago, aimed to continuously optimize the network in response to variations in network traffic and conditions. Yet, DNO development is still at its infancy, mainly hindered by a significant bottleneck of the lengthy optimization runtime. This paper identifies parallelism in greedy MNO algorithms and presents an advanced distributed parallel solution. The solution is designed, implemented and applied to real-life projects whose results yield a significant, highly scalable and nearly linear speedup up to 6.9 and 14.5 on distributed 8-core and 16-core systems respectively. Meanwhile, optimization outputs exhibit self-consistency and high precision compared to their sequential counterpart. This is a milestone in realizing the DNO. Further, the techniques may be applied to similar greedy optimization algorithm based applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been years since the introduction of the Dynamic Network Optimization (DNO) concept, yet the DNO development is still at its infant stage, largely due to a lack of breakthrough in minimizing the lengthy optimization runtime. Our previous work, a distributed parallel solution, has achieved a significant speed gain. To cater for the increased optimization complexity pressed by the uptake of smartphones and tablets, however, this paper examines the potential areas for further improvement and presents a novel asynchronous distributed parallel design that minimizes the inter-process communications. The new approach is implemented and applied to real-life projects whose results demonstrate an augmented acceleration of 7.5 times on a 16-core distributed system compared to 6.1 of our previous solution. Moreover, there is no degradation in the optimization outcome. This is a solid sprint towards the realization of DNO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report describes a tool for global optimization that implements the Differential Evolution optimization algorithm as a new Excel add-in. The tool takes a step beyond Excel’s Solver add-in, because Solver often returns a local minimum, that is, a minimum that is less than or equal to nearby points, while Differential Evolution solves for the global minimum, which includes all feasible points. Despite complex underlying mathematics, the tool is relatively easy to use, and can be applied to practical optimization problems, such as establishing pricing and awards in a hotel loyalty program. The report demonstrates an example of how to develop an optimum approach to that problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the Markov chain will be the tool used in the modeling and analysis of convergence of the genetic algorithm, both the standard version as for the other versions that allows the genetic algorithm. In addition, we intend to compare the performance of the standard version with the fuzzy version, believing that this version gives the genetic algorithm a great ability to find a global optimum, own the global optimization algorithms. The choice of this algorithm is due to the fact that it has become, over the past thirty yares, one of the more importan tool used to find a solution of de optimization problem. This choice is due to its effectiveness in finding a good quality solution to the problem, considering that the knowledge of a good quality solution becomes acceptable given that there may not be another algorithm able to get the optimal solution for many of these problems. However, this algorithm can be set, taking into account, that it is not only dependent on how the problem is represented as but also some of the operators are defined, to the standard version of this, when the parameters are kept fixed, to their versions with variables parameters. Therefore to achieve good performance with the aforementioned algorithm is necessary that it has an adequate criterion in the choice of its parameters, especially the rate of mutation and crossover rate or even the size of the population. It is important to remember that those implementations in which parameters are kept fixed throughout the execution, the modeling algorithm by Markov chain results in a homogeneous chain and when it allows the variation of parameters during the execution, the Markov chain that models becomes be non - homogeneous. Therefore, in an attempt to improve the algorithm performance, few studies have tried to make the setting of the parameters through strategies that capture the intrinsic characteristics of the problem. These characteristics are extracted from the present state of execution, in order to identify and preserve a pattern related to a solution of good quality and at the same time that standard discarding of low quality. Strategies for feature extraction can either use precise techniques as fuzzy techniques, in the latter case being made through a fuzzy controller. A Markov chain is used for modeling and convergence analysis of the algorithm, both in its standard version as for the other. In order to evaluate the performance of a non-homogeneous algorithm tests will be applied to compare the standard fuzzy algorithm with the genetic algorithm, and the rate of change adjusted by a fuzzy controller. To do so, pick up optimization problems whose number of solutions varies exponentially with the number of variables

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, researches have shown that the performance of metaheuristics can be affected by population initialization. Opposition-based Differential Evolution (ODE), Quasi-Oppositional Differential Evolution (QODE), and Uniform-Quasi-Opposition Differential Evolution (UQODE) are three state-of-the-art methods that improve the performance of the Differential Evolution algorithm based on population initialization and different search strategies. In a different approach to achieve similar results, this paper presents a technique to discover promising regions in a continuous search-space of an optimization problem. Using machine-learning techniques, the algorithm named Smart Sampling (SS) finds regions with high possibility of containing a global optimum. Next, a metaheuristic can be initialized inside each region to find that optimum. SS and DE were combined (originating the SSDE algorithm) to evaluate our approach, and experiments were conducted in the same set of benchmark functions used by ODE, QODE and UQODE authors. Results have shown that the total number of function evaluations required by DE to reach the global optimum can be significantly reduced and that the success rate improves if SS is employed first. Such results are also in consonance with results from the literature, stating the importance of an adequate starting population. Moreover, SS presents better efficacy to find initial populations of superior quality when compared to the other three algorithms that employ oppositional learning. Finally and most important, the SS performance in finding promising regions is independent of the employed metaheuristic with which SS is combined, making SS suitable to improve the performance of a large variety of optimization techniques. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of parameter-space size adjustment is pn,posed in order to enable successful application of genetic algorithms to continuous optimization problems. Performance of genetic algorithms with six different combinations of selection and reproduction mechanisms, with and without parameter-space size adjustment, were severely tested on eleven multiminima test functions. An algorithm with the best performance was employed for the determination of the model parameters of the optical constants of Pt, Ni and Cr.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Population-based metaheuristics, such as particle swarm optimization (PSO), have been employed to solve many real-world optimization problems. Although it is of- ten sufficient to find a single solution to these problems, there does exist those cases where identifying multiple, diverse solutions can be beneficial or even required. Some of these problems are further complicated by a change in their objective function over time. This type of optimization is referred to as dynamic, multi-modal optimization. Algorithms which exploit multiple optima in a search space are identified as niching algorithms. Although numerous dynamic, niching algorithms have been developed, their performance is often measured solely on their ability to find a single, global optimum. Furthermore, the comparisons often use synthetic benchmarks whose landscape characteristics are generally limited and unknown. This thesis provides a landscape analysis of the dynamic benchmark functions commonly developed for multi-modal optimization. The benchmark analysis results reveal that the mechanisms responsible for dynamism in the current dynamic bench- marks do not significantly affect landscape features, thus suggesting a lack of representation for problems whose landscape features vary over time. This analysis is used in a comparison of current niching algorithms to identify the effects that specific landscape features have on niching performance. Two performance metrics are proposed to measure both the scalability and accuracy of the niching algorithms. The algorithm comparison results demonstrate the algorithms best suited for a variety of dynamic environments. This comparison also examines each of the algorithms in terms of their niching behaviours and analyzing the range and trade-off between scalability and accuracy when tuning the algorithms respective parameters. These results contribute to the understanding of current niching techniques as well as the problem features that ultimately dictate their success.