973 resultados para global climate changes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in glaciers and ice caps provide some of the clearest evidence of climate change, and as such they constitute key variables for early detection strategies in global climate-related observations. These changes have impacts on global sea level fluctuations, the regional to local natural hazard situation, as well as on societies dependent on glacier meltwater. Internationally coordinated collection and publication of standardised information about ongoing glacier changes was initiated back in 1894. The compiled data sets on the global distribution and changes in glaciers and ice caps provide the backbone of the numerous scientific publications on the latest findings about surface ice on land. Since the very beginning, the compiled data has been published by the World Glacier Monitoring Service and its predecessor organisations. However, the corresponding data tables, formats and meta-data are mainly of use to specialists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Palaeoclimatic and paleoenvironmental high latitude records in the Southern Hemisphere are scarce compared to the northern counterpart. However, understanding global evolution of environmental systems during sudden climate changes is inseparable from an equivalent knowledge of both Hemispheres. In this context, a high-resolution study of lacustrine sediments from Laguna Potrok Aike, Santa Cruz province, Patagonia, Argentina, was conducted for the Lateglacial period using concurrent X-Ray Fluorescence (XRF) and Scanning electron microscope analyses. Peaks of Ca/Si and Mn, and occurrences of the green alga Phacotus lenticularis have been interpreted as variations in ventilation of the water column from 13.6 to 11.1 ka cal. BP. During this interval, mild climate conditions during the Younger Dryas are characterized by relatively weak westerlies favouring the formation of a stratified water body as indicated by preserved manganese and Ca/Si peaks and high Total Organic Carbon (TOC) values. In this environment, water in the epilimnion can reach sufficiently high temperature to allow P. lenticularis to grow. Colder conditions are marked by peaks in Ca without P. lenticularis and occur during the Antarctic Cold Reversal (ACR). In this Lateglacial interval, micropumices were also detected in large amount. Image analysis of thin sections allowed the counting and size measurement of detrital particles and micropumices separately. Micropumices significantly influence the iron and titanium content, hence preventing to use them as proxies of detrital input in this interval.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding abrupt climate changes requires detailed spatial/temporal records of such changes, and to make these records, we need rapidly responding, geographically widespread climate trackers. Glacial systems are such trackers, and recent additions to the stratigraphic record show overall synchronous response of glacial systems to climate change reflecting global atmosphere conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Southern Hemisphere Westerly Winds (SWW) constitute an important zonal circulation that influences large-scale precipitation patterns and ocean circulation. Variations in their intensity and latitudinal position have been suggested to exert a strong influence on the CO2 budget in the Southern Ocean, thus making them a potential factor affecting the global climate. The possible influence of solar forcing on SWW variability during the Holocene is addressed. Solar sensitivity experiments with a comprehensive global climate model (CCSM3) are carried out to study the response of SWW to solar variability. In addition, It is shown that a high-resolution iron record from the Chilean continental slope (41° S), which is interpreted to reflect changes in the position of the SWW, is significantly correlated with reconstructed solar activity during the past 3000 years. Taken together, the proxy and model results suggest that centennial-scale periods of lower (higher) solar activity caused equatorward (southward) shifts of the annual mean SWW.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak, and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. They rather indicate locally inhomogeneous rainfall changes and show, that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reconstructing Northern Hemisphere ice-sheet oscillations and meltwater routing to the ocean is important to better understand the mechanisms behind abrupt climate changes. To date, research efforts have mainly focused on the North American (Laurentide) ice-sheets (LIS), leaving the potential role of the European Ice Sheet (EIS), and of the Scandinavian ice-sheet (SIS) in particular, largely unexplored. Using neodymium isotopes in detrital sediments deposited off the Channel River, we provide a continuous and well-dated record for the evolution of the EIS southern margin through the end of the last glacial period and during the deglaciation. Our results reveal that the evolution of EIS margins was accompanied with substantial ice recession (especially of the SIS) and simultaneous release of meltwater to the North Atlantic. These events occurred both in the course of the EIS to its LGM position (i.e., during Heinrich Stadial –HS– 3 and HS2; ∼31–29 ka and ∼26–23 ka, respectively) and during the deglaciation (i.e., at ∼22 ka, ∼20–19 ka and from 18.2 ± 0.2 to 16.7 ± 0.2 ka that corresponds to the first part of HS1). The deglaciation was discontinuous in character, and similar in timing to that of the southern LIS margin, with moderate ice-sheet retreat (from 22.5 ± 0.2 ka in the Baltic lowlands) as soon as the northern summer insolation increase (from ∼23 ka) and an acceleration of the margin retreat thereafter (from ∼20 ka). Importantly, our results show that EIS retreat events and release of meltwater to the North Atlantic during the deglaciation coincide with AMOC destabilisation and interhemispheric climate changes. They thus suggest that the EIS, together with the LIS, could have played a critical role in the climatic reorganization that accompanied the last deglaciation. Finally, our data suggest that meltwater discharges to the North Atlantic produced by large-scale recession of continental parts of Northern Hemisphere ice sheets during HS, could have been a possible source for the oceanic perturbations (i.e., AMOC shutdown) responsible for the marine-based ice stream purge cycle, or so-called HE's, that punctuate the last glacial period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The European Union is the only supranational organisation to have both implemented ‘domestic’ climate change policy and provided leadership for the international community on adaptation and mitigation measures. Although the competence for action in climate change is shared between the national governments and the supranational level of the European Union, on behalf of the EU the European Commission has played a prominent role in international climate change negotiations. The Lisbon Treaty (in force December 2009) brought a number of changes to the institutional framework of the European Union, most significantly to the European Council and the external role of the EU. These changes appear to have added to the complexity which surrounds issues of the external representation of the EU and not simplified them – are there too many ‘Presidents’ of these institutions vying for a role? This paper questions the extent to which these changes will impact on the Commission headed by Jose Manuel Barroso, Barroso II Commission (2009-2014), particularly on Barroso’s ability to provide leadership on ‘domestic’ climate change policy and hence direction to the approach which the EU takes in global climate change politics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The G-77 has historically organized the participation of developing countries in multilateral environmental negotiations. This article analyses the impact of a new coalition of emerging powers - Brazil, China, India, and South Africa as BASIC - on the G-77's role in climate governance. While there are important benefits for both sides in their relationship, I argue that the G-77 is also disadvantaged in several concrete ways by the BASIC countries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Como organização regional, o papel da União Europeia na governança global do clima enfrenta obstáculos que não se aplicam a nenhuma outra parte da Convenção-Quadro das Nações Unidas sobre a Mudança do Clima (CQNUMC) e do Protocolo de Quioto. Avaliando essa singularidade, este artigo fornece uma analise teórica e empírica de como os elementos de actorness (reconhecimento, capacidade, oportunidade e coesão) definem a participação da UE no regime internacional de mudanças climáticas.