968 resultados para glicogel-synthase kinase-3-beta


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth factor signaling promotes anabolic processes via activation of the PI3K-Akt kinase cascade. Deregulation of the growth factor-dependent PI3K-Akt pathway was implicated in tumorigenesis. Akt is an essential serine/threonine protein kinase that controls multiple physiological functions such as cell growth, proliferation, and survival to maintain cellular homeostasis. Recently, the mammalian Target of Rapamycin Complex 2 (mTORC2) was identified as the main Akt Ser-473 kinase, and Ser-473 phosphorylation is required for Akt hyperactivation. However, the detailed mechanism of mTORC2 regulation in response to growth factor stimulation or cellular stresses is not well understood. In the first project, we studied the regulation of the mTORC2-Akt signaling under ER stress. We identified the inactivation of mTORC2 by glycogen synthase kinase-3β (GSK-3β). Under ER stress, the essential mTORC2 component, rictor, is phosphorylated by GSK-3β at Ser-1235. This phosphorylation event results in the inhibition of mTORC2 kinase activity by interrupting Akt binding to mTORC2. Blocking rictor Ser-1235 phosphorylation can attenuate the negative impacts of GSK-3β on mTORC2/Akt signaling and tumor growth. Thus, our work demonstrated that GSK-3β-mediated rictor Ser-1235 phosphorylation in response to ER stress interferes with Akt signaling by inhibiting mTORC2 kinase activity. In the second project, I investigated the regulation of the mTORC2 integrity. We found that basal mTOR kinase activity depends on ATP level, which is tightly regulated by cell metabolism. The ATP-sensitive mTOR kinase is required for SIN1 protein phosphorylation and stabilization. SIN1 is an indispensable subunit of mTORC2 and is required for the complex assembly and mTORC2 kinase activity. Our findings reveal that mTOR-mediated phosphorylation of SIN1 is critical for maintaining complex integrity by preventing SIN1 from lysosomal degradation. In sum, our findings verify two distinct mTORC2 regulatory mechanisms via its components rictor and SIN1. First, GSK-3β-mediated rictor Ser-1235 phosphorylation results in mTORC2 inactivation by interfering its substrate binding ability. Second, mTOR-mediated Ser-260 phosphorylation of SIN1 preserves its complex integrity. Thus, these two projects provide novel insights into the regulation of mTORC2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to the amyloid hypothesis for the pathogenesis of Alzheimer disease, beta-amyloid peptide (betaA) directly affects neurons, leading to neurodegeneration and tau phosphorylation. In rat hippocampal culture, betaA exposure activates tau protein kinase I/glycogen synthase kinase 3beta (TPKI/GSK-3beta), which phosphorylates tau protein into Alzheimer disease-like forms, resulting in neuronal death. To elucidate the mechanism of betaA-induced neuronal death, we searched for substrates of TPKI/GSK-3beta in a two-hybrid system and identified pyruvate dehydrogenase (PDH), which converts pyruvate to acetyl-CoA in mitochondria. PDH was phosphorylated and inactivated by TPKI/GSK-3beta in vitro and also in betaA-treated hippocampal cultures, resulting in mitochondrial dysfunction, which would contribute to neuronal death. In cholinergic neurons, betaA impaired acetylcholine synthesis without affecting choline acetyltransferase activity, which suggests that PDH is inactivated by betaA-induced TPKI/GSK-3beta. Thus, TPKI/GSK-3beta regulates PDH and participates in energy metabolism and acetylcholine synthesis. These results suggest that TPKI/GSK-3beta plays a key role in the pathogenesis of Alzheimer disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Staphylococcal enterotoxins (SE) stimulate T cells expressing the appropriate variable region beta chain of (V beta) T-cell receptors and have been implicated in the pathogenesis of several autoimmune diseases. Depending on costimulatory signals, SE induce either proliferation or anergy in T cells. In addition, SE can induce an interleukin-2 (IL-2) nonresponsive state and apoptosis. Here, we show that SE induce dynamic changes in the expression of and signal transduction through the IL-2 receptor (IL-2R) beta and gamma chains (IL-2R beta and IL-2R gamma) in human antigen-specific CD4+ T-cell lines. Thus, after 4 hr of exposure to SEA and SEB, the expression of IL-2R beta was down-regulated, IL-2R gamma was slightly up-regulated, while IL-2R alpha remained largely unaffected. The changes in the composition of IL-2Rs were accompanied by inhibition of IL-2-induced tyrosine phosphorylation of the Janus protein-tyrosine kinase 3 (Jak3) and signal transducers and activators of transcription called Stat3 and Stat5. In parallel experiments, IL-2-driven proliferation was inhibited significantly. After 16 hr of exposure to SE, the expression of IL-2R beta remained low, while that of IL2R alpha and IL2R gamma was further up-regulated, and ligand-induced tyrosine phosphorylation of Jak3 and Stat proteins was partly normalized. Yet, IL-2-driven proliferation remained profoundly inhibited, suggesting that signaling events other than Jak3/Stat activation had also been changed following SE stimulation. In conclusion, our data suggest that SE can modulate IL-2R expression and signal transduction involving the Jak/Stat pathway in CD4+ T-cell lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work is reported the sensitization effect by polymer matrices on the photoluminescence properties of diaquatris(thenoyltrifluoroacetonate)europium(III), [Eu(tta)(3)(H(2)O)(2)], doped into poly-beta-hydroxybutyrate (PHB) with doping percentage at 1, 3, 5, 7 and 10% (mass) in film form. TGA results indicated that the Eu(3+) complex precursor was immobilized in the polymer matrix by the interaction between the Eu(3+) complex and the oxygen atoms of the PHB polymer when the rare earth complex was incorporated in the polymeric host. The thermal behaviour of these luminescent systems is similar to that of the undoped polymer, however, the T(onset) temperature of decomposition decreases with increase of the complex doping concentration. The emission spectra of the Eu(3+) complex doped PHB films recorded at 298 K exhibited the five characteristic bands arising from the (5)D(0) -> (7)F(J) intraconfigurational transitions (J = 0-4). The fact that the quantum efficiencies eta of the doped film increased significantly revealed that the polymer matrix acts as an efficient co-sensitizer for Eu(3+) luminescent centres and therefore enhances the quantum efficiency of the emitter (5)D(0) level. The luminescence intensity decreases, however, with increasing precursor concentration in the doped polymer to greater than 5% where a saturation effect is observed at this specific doping percentage, indicating that changes in the polymeric matrix improve the absorption property of the film, consequently quenching the luminescent effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pimarane-type diterpenes were described to exert antispasmodic and relaxant activities. Based on this observation we hypothesized that the diterpene ent-8(14),15-pimaradien-3 beta-ol (PA-3 beta-ol) induced vascular relaxation. With this purpose, the present work investigates the mechanisms involved in the vasorelaxant effect of the pimarane-type diterpene PA-3 beta-ol. Vascular reactivity experiments, using standard muscle bath procedures, were performed in isolated aortic rings from male Wistar rats. Cytosolic calcium concentration ([Ca(2+)]c) was measured by confocal microscopy using the fluorescent probe Fluo-3AM. PA-3 beta-ol (10, 50 and 100 mu mol/l) inhibited phenylephrine and KCl-induced contraction in either endothelium-intact or denuded rat aortic rings. PA-3 beta-ol also reduced CaCl(2)-induced contraction in Ca(2+)-free solution containing KCl (30 mmol/l) or phenylephrine (0.1 mu mol/l). PA-3 beta-ol (1-300 mu mol/l) concentration dependently relaxed phenylephrine-pre-contracted rings with intact or denuded endothelium. The diterpene also relaxed KCl-pre-contracted rings with intact or denuded endothelium. Moreover, Ca(2+) mobilization study showed that PA-3 beta-ol (100 mu mol/l) and verapamil (1 mu mol/l) inhibited the increase in Ca(2+)-concentration in smooth muscle and endothelial cells induced by phenylephrine (10 mu mol/l) or KCl (60 mmol/l). Pre-incubation of intact or denuded aortic rings with N(G)-nitro-L-arginine methyl ester (L-NAME, 100 mu mol/l) and 1H-[1,2,4] Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ 1 mu mol/l) produced a rightward displacement of the PA-3 beta-ol concentration-response curves. On the other hand, 7-nitroindazole (100 mu mol/l), 1400 W (1 mu mol/l), indomethacin (10 mu mol/l) and tetraethylammonium (1 mmol/l) did not affect PA-3 beta-ol-induced relaxation. Collectively, our results provide evidence that the effects elicited by PA-3 beta-ol involve extracellular Ca(2+) influx blockade. Its effects are also partly mediated by the activation of NO-cGMP pathway. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dendritic cell (DC) imbalance with a marked deficiency in CD4(-)8(+) DC occurs in non-obese diabetic (NOD) mice, a model of human autoimmune diabetes mellitus. Using a NOD congenic mouse strain, we find that this CD4(-)8(+) DC deficiency is associated with a gene segment on chromosome 4, which also encompasses non-MHC diabetes susceptibility loci. Treatment of NOD mice with fms-like tyrosine kinase 3 ligand (FL) enhances the level of CD4(-)8(+) DC, temporarily reversing the DC subtype imbalance. At the same time, fms-like tryosine kinase 3 ligand treatment blocks early stages of the diabetogenic process and with appropriately timed administration can completely prevent diabetes development. This points to a possible clinical use of FL to prevent autoimmune disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports on the synthesis and characterization of the ligand 3-hexadecylpentane-2,4-drone (Hhdacac) and its Eu(3+) complexes Eu(hdacac)(6) center dot 2H(2)O, Eu(hdacac)(6) center dot phen and Eu(hdacac)(6) center dot tta, where phen and tta denote 1,10-phenanthroline and thenoyltrifluoroacetone, respectively. These new compounds present long carbon chains and their expected miscibility into non-polar ambients is confirmed by the emission spectra of Eu(hdacac)6 center dot tta in hexane. Moreover, the amphiphilic properties of Eu(hdacac)6 complexes allow the obtainment of thin luminescent films by the Langmuir-Blodgett technique. In both cases (solids and films), the typical antenna effect of beta-diketonates is observed. The alluring characteristics of these compounds raise great interest in many fields of Materials Science, like photo- and electro-luminescent materials (mainly thin ""organic"" films), metal catalysts or probes in non-polar solutions, and Langmuir-Blodgett films of several compositions. For the characterization of these products, nuclear magnetic resonance spectroscopy ((1)H NMR), thermogravimetric analysis, elementary analyses (C, H), scanning electron microscopy (energy dispersive X-ray spectroscopy), absorption (UV-vis/FT-IR) and photoluminescence spectroscopies were used. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Galectin-3 has been implicated in tumor progression of some malignancies as thyroid, prostate, and salivary gland tumors. Recently, it has been suggested that this protein may be an important mediator of the beta-catenin/Wnt pathway. Moreover, nuclear galectin-3 expression has been implicated in cell proliferation, promoting cyclin D1 activation. Thus, the present study aimed to correlate galectin-3 expression with beta-catenin and cyclin D1 expressions in adenoid cystic carcinoma (ACC) and in polymorphous low-grade adenocarcinoma (PLGA). Methods: Fifteen formalin-fixed paraffin-embedded cases of each tumor were retrieved from the files of the Surgical Oral Pathology Service at the University of Sao Paulo and the proteins were analyzed by immunohistochemistry. Results: Adenoid cystic carcinoma showed galectin-3 immunostaining mainly in the nuclei, while PLGA revealed a positive mostly cytoplasmic reaction to galectin-3 in the largest part of tumor cells. Both tumors showed intense cytoplasmic/nuclear staining for beta-catenin in majority of cases. Cyclin D1 immunoreactivity was not detected in 14/15 PLGA and showed specific nuclear staining in 10/15 cases of ACC in more than 5% of the neoplastic cells. Cyclin D1 expression was correlated with cytoplasmic and nuclear galectin-3 expression in ACC (P < 0.05). Conclusions: These results suggest that in ACC galectin-3 may play a role in cellular proliferation through cyclin D1 activation. In addition, nuclear expression of galectin-3 in ACC may be related to a more aggressive behavior of this lesion. Although beta-catenin seems to play a role in carcinogenesis in both lesions, it seems that it does not bind to galectin-3 for cyclin D1 stimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA strand-breaks (SBs) with non-ligatable ends are generated by ionizing radiation, oxidative stress, various chemotherapeutic agents, and also as base excision repair (BER) intermediates. Several neurological diseases have already been identified as being due to a deficiency in DNA end-processing activities. Two common dirty ends, 3'-P and 5'-OH, are processed by mammalian polynucleotide kinase 3'-phosphatase (PNKP), a bifunctional enzyme with 3'-phosphatase and 5'-kinase activities. We have made the unexpected observation that PNKP stably associates with Ataxin-3 (ATXN3), a polyglutamine repeat-containing protein mutated in spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph Disease (MJD). This disease is one of the most common dominantly inherited ataxias worldwide; the defect in SCA3 is due to CAG repeat expansion (from the normal 14-41 to 55-82 repeats) in the ATXN3 coding region. However, how the expanded form gains its toxic function is still not clearly understood. Here we report that purified wild-type (WT) ATXN3 stimulates, and by contrast the mutant form specifically inhibits, PNKP's 3' phosphatase activity in vitro. ATXN3-deficient cells also show decreased PNKP activity. Furthermore, transgenic mice conditionally expressing the pathological form of human ATXN3 also showed decreased 3'-phosphatase activity of PNKP, mostly in the deep cerebellar nuclei, one of the most affected regions in MJD patients' brain. Finally, long amplicon quantitative PCR analysis of human MJD patients' brain samples showed a significant accumulation of DNA strand breaks. Our results thus indicate that the accumulation of DNA strand breaks due to functional deficiency of PNKP is etiologically linked to the pathogenesis of SCA3/MJD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rationale: Peroxisome proliferator activated receptor (PPAR)-beta/delta is a transcription factor that belongs to the PPAR nuclear hormone receptor family, but the role of PPAR-beta/delta in sepsis is unknown. Objectives: We investigated the role of PPAR-beta/delta in murine models of LPS-induced organ injury and dysfunction and cecal ligation and puncture (CLP)-induced polymicrobial sepsis. Methods: Wild-type (WT) and PPAR-beta/delta knockout (1(0) mice and C57BL/6 mice were subjected to LPS for 16 hours. C57BL/6 mice received the PPAR-beta/delta agonist GW0742 (0.03 mg/kg intravenously, 1 h after LPS) or GW0742 plus the PPAR-beta/delta antagonist GSK0660 (0.1 mg/kg intravenously, 30 min before LPS). CD-1 mice subjected to CLP received GW0742 or GW0742 plus GSK0660. Measurements and Main Results: In PPAR-beta/delta KO mice, endotoxemia exacerbated organ injury and dysfunction (cardiac, renal, and hepatic) and inflammation (lung) compared with WT mice. In C57BL/6 mice subjected to endotoxemia, GW0742 significantly (1) attenuated organ (cardiac and renal) dysfunction and inflammation (lung); (2) increased the phosphorylation of Akt and glycogen synthase kinase (GSK)-3 beta; (3) attenuated the increase in extracellular signal-regulated kinase (ERK)1/2 and signal transducer and activator of transcription (STAT)-3 phosphorylation; and (4) attenuated the activation of nuclear factor (NF)-kappa B and the expression of inducible nitric oxide synthase (iNOS). In CD-1 mice subjected to CLP, GW0742 improved 10-day survival. All the observed beneficial effects of GW0742 were attenuated by the PPAR-beta/delta antagonist GSK0660. Conclusions: PPAR-beta/delta protects against multiple organ injury and dysfunction, and inflammation caused by endotoxic shock and improves survival in polymicrobial sepsis by a mechanism that may involve activation of Akt and inhibition of GSK-3 beta and NF-kappa B.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentrations of 3-beta-hydroxybutyrate (3HB) in femoral blood, urine, vitreous humor as well as pericardial and cerebrospinal fluids were retrospectively examined in a series of medico-legal autopsies, which included cases of diabetic ketoacidosis, hypothermia fatalities without ethanol in blood, bodies presenting mild decompositional changes, and sudden deaths in chronic alcoholics. Similar increases in 3HB concentrations were observed in blood, vitreous, and pericardial fluid, irrespective of the cause of death, suggesting that pericardial fluid and vitreous can both be used as alternatives to blood for postmortem 3HB determination. Urine 3HB levels were higher than blood values in most cases. Cerebrospinal fluid 3HB levels were generally lower than concentrations in blood and proved to be diagnostic of underlying metabolic disturbances only when significant increases occurred.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentrations of 3-beta-hydroxybutyrate (3HB) in blood and two liver samples were retrospectively examined in a series of medicolegal autopsies. These cases included diabetic ketoacidosis, nondiabetic individuals presenting moderate to severe decompositional changes and nondiabetic medicolegal cases privy of decompositional changes. 3HB concentrations in liver sample homogenates correlate well with blood values in all examined groups. Additionally, decompositional changes were not associated with increases in blood and liver 3HB levels. These results suggest that 3HB can be reliably measured in liver homogenates when blood is not available at autopsy. Furthermore, they suggest that metabolic disturbances potentially leading or contributing to death may be objectified through liver 3HB determination even in decomposed bodies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cholesterol (Chol) is an important lipid in cellular membranes functioning both as a membrane fluidity regulator, permeability regulator and co-factor for some membrane proteins, e.g. G-protein coupled receptors. It also participates in the formation of signaling platforms and gives the membrane more mechanical strenght to prevent osmotic lysis of the cell. The sterol structure is very conserved and already minor structural modifications can completely abolish its membrane functions. The right interaction with adjacent lipids and the preference of certain lipid structures over others are also key factors in determining the membrane properties of cholesterol. Because of the many important properties of cholesterol it is of value to understand the forces and structural properties that govern the membrane behavior of this sterol. In this thesis we have used established fluorescence spectroscopy methods to study the membrane behavior of both cholesterol and some of its 3β-modified analogs. Using several fluorescent probes we have established how the acyl chain order of the two main lipid species, sphingomyelin (SM) and phosphatidylcholine (PC) affect sterol partitioning as well as characterized the membrane properties of 3β-aminocholesterol and cholesteryl phosphocholine. We concluded that cholesterol prefers SM over PC at equal acyl chain order, indicating that other structural properties besides the acyl chain order are important for sphingomyelin-sterol interactions. A positive charge at the 3β position only caused minor changes in the sterol membrane behavior compared to cholesterol. A large phosphocholine head group caused a disruption in membrane packing together with other membrane lipids with large head groups, but was also able to form stable fluid bilayers together with ceramide and cholesterol. The Ability of the large head group sterol to form bilayers together with ceramide was further explored in the last paper where cholesteryl phosphocholine/ceramide (Chol-PC/Cer) complexes were successfully used to transfer ceramide into cultured cells.