969 resultados para germination seed
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Seeds of Aechmea bromeliifolia, A. castelnavii (Bromelioideae); Dyckia duckei, D. racemosa (Pitcairnioideae) and Tillandsia adpressiflora (Tillandsioideae) were collected in the Amazon regions (Mato Grosso) and studied to describe morphological characterization and post-seminal development, which can be taxonomically useful, and to assess percent germination. All the species have epigeous germination and produce cryptocotyledonary plantlets. Seeds have no dormancy and percent germination is high (over 86%), which facilitates the production of seedlings and conservation studies. Exclusive characteristics of the genera include: the seed coat of Aechmea (Bromelioideae) has mucilage that prevents desiccation; whereas that of Dyckia (Pitcairnioideae) has membranaceous wings and that of Tillandsia (Tillandsioideae) has feathery appendages, both of which make dispersal easier and establish the epiphytic habit. Initial post-seminal development of Aechmea (Bromelioideae) and Dyckia (Pitcairnioideae) is marked by the emergence of primary roots, interpreted as a basal character, whereas that of Tillandsia adpressiflora (Tillandsioideae) is marked by the emergence of the cotyledon, interpreted as a derived character. Dyckia and Tillandsia have a small tank only in the seedling phase while the contrary occurs in Aechmea.
Resumo:
In the process of riverine forest restoration, increasing emphasis has been given to the study of herbaceous and shrub species. However, for many of these we still lack basic knowledge, such as reproduction biology. Therefore, the objective of this study was to characterize the production, seed germination and reproductive capacity of Tibouchina clavata (Pers.) Wurdack., a species of wide distribution in wetlands. Fruits were collected from different mother trees located on the southern coast of São Paulo state and, after processing, were subjected to germination under constant temperatures of 25 and 30°C, and alternated temperatures of 25-30°C in the first essay, and at 15, 20, 25, 30, 35, 40°C in another essay, and at 25 °C with presence or absence of light. 10 plants were marked and, in each one, the number of fruits per plant and seed number per fruit were determined to characterize their reproductive capacity. The species germinates over a wide temperature range (15 to 35 °C), and the optimum temperature was in the range of 20 to 30 °C. Seed didn't germinate at 40 °C and could be characterized as being of absolute positive photoblastism. In general, there were over 1600 seeds per fruit and 85.000 seeds per plant. The high seed yield, coupled with good germination percentage demonstrated that this is a species with high reproductive potential.
Resumo:
The establishment of a peanut crop may be unsatisfactory due to poor seed performance in the field and among the factors attributed to this are a reduction in seed vigor during storage and the presence of pathogens. The objective of this study was to evaluate the efficiency of treating peanut seeds with fungicides and the effect on physiological performance and disease control during storage. In a completely random experimental design, two seed batches of the Runner IAC 886 peanut cultivar were submitted to five fungicide treatments (1 control - untreated; 2 thiram; 3 carbendazim + thiram; 4 fludioxonil + metalaxyl-m; 5 fludioxonil + mefenoxam + thiabendazole) and evaluated after zero, 30 and 60 days of storage. The seeds were stored untreated but treated before the evaluation of physiological performance from germination, vigor (first germination count and accelerated aging), field seedling emergence and seed sanitation tests. The results showed differences in batch performance potential during storage, with batch 1 being superior. The sanitation test showed that all the chemical seed treatments controlled pathogens efficiently (Aspergillus spp. and Penicillium sp.), but only thiram did not affect peanut seed performance in the laboratory evaluations.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
The tip pruning stimulates the emission of lateral shoots, thus can produce higher number of flowers, fruits and seeds. This work aimed to evaluate the effect of apex pruning on fruit and seed production in pumpkin. The treatments consisted of plants without pruning, with pruning in the sixth, eighth and tenth node of main stem. The experimental design was a randomized block, with six replications. It was studied a line of pumpkin of the Germplasm Bank of the Universidade Estadual Paulista/Faculdade de Ciências Agronômicas. The characteristics evaluated were: number of branches per plant and fruit position in branches of the plant production (number and weight) of fruits per plant, fruit yield, fruit average weight, fruit length and diameter, seed weight per fruit, seed yield and quality (germination test, first count, thousand seed weight, emergence, speed of emergence and accelerated aging). There was a significant difference only for number of secondary branches per plant and thousand seed weight, with larger values for plants that have not been pruned. It was obtained high average of germination (94%) and good fruit (16.9 t ha-1) and seed (148 kg ha-1) yield. The apex pruning does not influence the production of fruits and seeds, as well as the physiological seed quality in pumpkin.
Resumo:
Natural regeneration is an ecological key-process that makes plant persistence possible and, consequently, it constitutes an essential element of sustainable forest management. In this respect, natural regeneration in even-aged stands of Pinus pinea L. located in the Spanish Northern Plateau has not always been successfully achieved despite over a century of pine nut-based management. As a result, natural regeneration has recently become a major concern for forest managers when we are living a moment of rationalization of investment in silviculture. The present dissertation is addressed to provide answers to forest managers on this topic through the development of an integral regeneration multistage model for P. pinea stands in the region. From this model, recommendations for natural regeneration-based silviculture can be derived under present and future climate scenarios. Also, the model structure makes it possible to detect the likely bottlenecks affecting the process. The integral model consists of five submodels corresponding to each of the subprocesses linking the stages involved in natural regeneration (seed production, seed dispersal, seed germination, seed predation and seedling survival). The outputs of the submodels represent the transitional probabilities between these stages as a function of climatic and stand variables, which in turn are representative of the ecological factors driving regeneration. At subprocess level, the findings of this dissertation should be interpreted as follows. The scheduling of the shelterwood system currently conducted over low density stands leads to situations of dispersal limitation since the initial stages of the regeneration period. Concerning predation, predator activity appears to be only limited by the occurrence of severe summer droughts and masting events, the summer resulting in a favourable period for seed survival. Out of this time interval, predators were found to almost totally deplete seed crops. Given that P. pinea dissemination occurs in summer (i.e. the safe period against predation), the likelihood of a seed to not be destroyed is conditional to germination occurrence prior to the intensification of predator activity. However, the optimal conditions for germination seldom take place, restraining emergence to few days during the fall. Thus, the window to reach the seedling stage is narrow. In addition, the seedling survival submodel predicts extremely high seedling mortality rates and therefore only some individuals from large cohorts will be able to persist. These facts, along with the strong climate-mediated masting habit exhibited by P. pinea, reveal that viii the overall probability of establishment is low. Given this background, current management –low final stand densities resulting from intense thinning and strict felling schedules– conditions the occurrence of enough favourable events to achieve natural regeneration during the current rotation time. Stochastic simulation and optimisation computed through the integral model confirm this circumstance, suggesting that more flexible and progressive regeneration fellings should be conducted. From an ecological standpoint, these results inform a reproductive strategy leading to uneven-aged stand structures, in full accordance with the medium shade-tolerant behaviour of the species. As a final remark, stochastic simulations performed under a climate-change scenario show that regeneration in the species will not be strongly hampered in the future. This resilient behaviour highlights the fundamental ecological role played by P. pinea in demanding areas where other tree species fail to persist.