983 resultados para genetic drift
Resumo:
Abstract Background: The amount and structure of genetic diversity in dessert apple germplasm conserved at a European level is mostly unknown, since all diversity studies conducted in Europe until now have been performed on regional or national collections. Here, we applied a common set of 16 SSR markers to genotype more than 2,400 accessions across 14 collections representing three broad European geographic regions (North+East, West and South) with the aim to analyze the extent, distribution and structure of variation in the apple genetic resources in Europe. Results: A Bayesian model-based clustering approach showed that diversity was organized in three groups, although these were only moderately differentiated (FST=0.031). A nested Bayesian clustering approach allowed identification of subgroups which revealed internal patterns of substructure within the groups, allowing a finer delineation of the variation into eight subgroups (FST=0.044). The first level of stratification revealed an asymmetric division of the germplasm among the three groups, and a clear association was found with the geographical regions of origin of the cultivars. The substructure revealed clear partitioning of genetic groups among countries, but also interesting associations between subgroups and breeding purposes of recent cultivars or particular usage such as cider production. Additional parentage analyses allowed us to identify both putative parents of more than 40 old and/or local cultivars giving interesting insights in the pedigree of some emblematic cultivars. Conclusions: The variation found at group and sub-group levels may reflect a combination of historical processes of migration/selection and adaptive factors to diverse agricultural environments that, together with genetic drift, have resulted in extensive genetic variation but limited population structure. The European dessert apple germplasm represents an important source of genetic diversity with a strong historical and patrimonial value. The present work thus constitutes a decisive step in the field of conservation genetics. Moreover, the obtained data can be used for defining a European apple core collection useful for further identification of genomic regions associated with commercially important horticultural traits in apple through genome-wide association studies.
Resumo:
The bare-faced curassow (Crax fasciolata) is a large Neotropical bird that suffers anthropogenic pressure across much of its range. A captive population is maintained for conservation management, although there has been no genetic screening of stocks. Based on the six microsatellite markers developed for Crax globulosa, the genetic variability of C. fasciolata and possible differences between a wild and a captive population were investigated. Only three loci were polymorphic, with a total of 27 alleles. More than half of these alleles were private to the wild (n = 8) or captive (n = 7) populations. Significant deviations from Hardy-Weinberg equilibrium were restricted to the captive population. Despite the number of private alleles, genetic drift has probably promoted differentiation between populations. Our results indicate that wild C. fasciolata populations are genetically impoverished and structured, but species-specific microsatellite markers will be necessary for a more reliable assessment of the species` genetic diversity.
Resumo:
The 3'-terminal 853 nt (and the putative 283 aa) sequence of the VP2-encoding gene from 29 field strains of porcine parvovirus (PPV) were determined and compared both to each other and with other published sequences. Sequences were examined using maximum-parsimony and statistical analyses for nucleotide diversity and sequence variability. Among the nucleotide sequences of the PPV field strains, 26 polymorphic sites were encountered; 22 polymorphic sites were detected in the putative amino acid sequence. Mapping polymorphic sites of protein data onto the three-dimensional (3D) structure of PPV VP2 revealed that almost all substitutions were located on the external surface of the viral capsid. Mapping amino acid substitutions to the alignment between PPV VP2 sequences and the 3D structure of canine parvovirus (CPV) capsid, many PPV substitutions were observed to map to regions of recognized antigenicity and/or to contain phenotypically important residues for CPV and other parvoviruses. In spite of the high sequence similarity, genetic analysis has shown the existence of at least two virus lineages among the samples. In conclusion, these results highlight the need for close surveillance on PPV genetic drift, with an assessment of its potential ability to modify the antigenic make-up of the virus.
Resumo:
Aedes aegypti from the Brazilian cities of Sao Jose do Rio Preto (SJ) and Goiania (GO) were analyzed as to their esterase patterns and the results were compared with data obtained about 5 years before for SJ population. Esterase bands not detected in the previous study were now observed in mosquitoes from both SJ and GO populations, being the last considered a population resistant to insecticides. Other similarities between SJ and GO populations in this study, and some differences in comparison with the previous data on SJ were observed, involving, in addition to changes in band type, changes in frequency of mosquitoes expressing them and differential gene activation during development. As it is generally true for genetic features, changes in the esterase patterns are expected to be the result of factors such as selection by environmental conditions and genetic drift. In the present case, continuous use of insecticides aiming mosquito population size control in SJ by sanitary authorities could be involved in the observed changes. Changed esterases were classified as carboxylesterases and cholinesterases, which are enzymes already shown to take part in the development of resistance in several organisms. In addition, data obtained in the elapsed time by authorities responsible for the mosquito control has shown increasing insecticide resistance of SJ population mosquitoes parallel to increase in the total amount of esterases, reinforcing the mentioned possibility.
Resumo:
A simulation study was made of the effects of mixing two evolutionary forces (natural selection and random genetic drift), combined in a single data matrix of gene frequencies, on the resulting genetic distances among populations. Twenty-one, kinds of simulated gene frequencies surfaces, for 15 populations linearly distributed over geographic space, were used to construct 21 data matrices, combining different proportions of two types of surfaces (gradients and random surfaces). These matrices were analysed by Unweighted Pair-Group Method - Arithmetic Averages (UPGMA), clustering and Principal Coordinate Analysis. The results obtained show that ordination is more accurate than UPGMA in revealing the spatial patterns in the genetic distances, in comparison with results obtained using the Mantel test comparing directly genetic and geographic distances.
Resumo:
Habitat fragmentation is predicted to restrict gene flow, which can result in the loss of genetic variation and inbreeding depression. The Brazilian Atlantic forest has experienced extensive loss of habitats since European settlement five centuries ago, and many bird populations and species are vanishing. Genetic variability analysis in fragmented populations could be important in determining their long-term viability and for guiding management plans. Here we analyzed genetic diversity of a small understory bird, the Blue-manakins Chiroxiphia caudata (Pipridae), from an Atlantic forest fragment (112 ha) isolated 73 years ago, and from a 10,000 ha continuous forest tract (control), using orthologous microsatellite loci. Three of the nine loci tested were polymorphic. No statistically significant heterozygote loss was detected for the fragment population. Although genetic diversity, which was estimated by expected heterozygosity and allelic richness, has been lower in the fragment population in relation to the control, it was not statistically significant, suggesting that this 112 ha fragment can be sufficient to maintain a blue-manakin population large enough to avoid stochastic effects, such as inbreeding and/or genetic drift. Alternatively, it is possible that 73 years of isolation did not accumulate sufficient generations for these effects to be detected. However, some alleles have been likely lost, specially the rare ones, what is expected from genetic drift for such a small and isolated population. A high genetic differentiation was detected between populations by comparing both allelic and genotypic distributions. Only future studies in continuous areas are likely to answer if such a structure was caused by the isolation resulted from the forest fragmentation or by natural population structure.
Resumo:
Four species of green lacewings occur in Brazil, of which Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) exhibits the widest geographical distribution. Chrysoperla externa is a predatory insect that is potentially useful as a biological control agent of agricultural pests. Studies on the genetic diversity of lacewing populations are essential to reduce the environmental and economic harm that may be caused by organisms with a low ability to adapt to the adverse and/or different environmental conditions to which they are exposed. We used the cytochrome oxidase I mitochondrial gene as a molecular marker to investigate the genetic diversity of green lacewing species collected from native and agroecosystem environments. Populations derived from native areas showed higher rates of genetic variability compared to populations from agroecosystems. Demographic changes in the form of population expansion were observed in agroecosystems, whereas populations in the native environment appeared stable over time. A statistical analysis showed significant genetic structure between each of the sampled groups, combined with its complete absence within each group, corroborating each group's identity. We infer that the loss of variability exhibited by populations from the agroecosystems is the result of genetic drift by means of the founder effect, a similar effect that has been observed in other introduced populations. Agroecosystems might therefore function as exotic areas for green lacewings, even when these areas are within the normal range of the species. © 2012 Sociedade Entomológica do Brasil.
Resumo:
We genotyped 15 microsatellite loci in order to evaluate the effects of habitat fragmentation, caused by flooding of the Tucuruí reservoir, on the genetic structure of Alouatta belzebul in eastern Amazonia. The analysis included two populations sampled in 1984, representing both margins of the Tocantins river, and three populations sampled 18 years later. Minimal differences in the diversity levels between present-day (Ho = 0.62-0.69 and AR = 6.07-7.21) and pre-flooding (Ho = 0.60-0.62 and AR = 6.27-6.77) populations indicated there was no significant loss of genetic variability, possibly because of successful management strategies applied during the flooding. The changes observed were limited to shifts in the composition of alleles, which presumably reflect the admixture of subpopulations during flooding. Given this, there were significant differences in the Rst values (p = 0.05) in all but one between-site comparison. Both present-day and original populations showed a deficit of heterozygotes, which suggests that this may be typical of the species, at least at a local level, perhaps because of specific ecological characteristics. The relatively large number of private alleles recorded in all populations may be a consequence of the Wahlund effect resulting from population admixture or a process of expansion rather than the loss of rare alleles through genetic drift. Additionally, the levels of genetic variability observed in this study were higher than those reported for other species of Neotropical primates, suggesting good fitness levels in these A. belzebul populations. Regular genetic monitoring of remnant populations, especially on islands, should nevertheless be an integral component of long-term management strategies.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Hancornia speciosa Gomes is a fruit tree native from Brazil that belongs to Apocinaceae family, and is popularly known as Mangabeira. Its fruits are widely consumed raw or processed as fruit jam, juices and ice creams, which have made it a target of intense exploitation. The extractive activities and intense human activity on the environment of natural occurrence of H. speciosa has caused genetic erosion in the species and little is known about the ecology or genetic structure of natural populations. The objective of this research was the evaluation of the genetic diversity and genetic structure of H. speciosa var. speciosa. The genetic variability was assessed using 11 allozyme loci with a sample of 164 individuals distributed in six natural populations located in the States of Pernambuco and Alagoas, Northeastern Brazil. The results showed a high level of genetic diversity within the species (e= 0.36) seeing that the most of the genetic variability of H. speciosa var. speciosa is within its natural populations with low difference among populations (
or = 0.081). The inbreeding values within (
= -0.555) and among populations (
=-0.428) were low showing lacking of endogamy and a surplus of heterozygotes. The estimated gene flow (
m ) was high, ranging from 2.20 to 13.18, indicating to be enough to prevent the effects of genetic drift and genetic differentiation among populations. The multivariate analyses indicated that there is a relationship between genetic and geographical distances, which was confirmed by a spatial pattern analysis using Mantel test (r = 0.3598; p = 0.0920) with 1000 random permutations. The high genetic diversity index in these populations indicates potential for in situ genetic conservation.
Resumo:
Plant survival in alpine landscapes is constantly challenged by the harsh and often unpredictable environmental conditions. Steep environmental gradients and patchy distribution of habitats lead to small size and spatial isolation of populations and restrict gene flow. Agricultural land use has further increased the diversity of habitats below and above the treeline. We studied the consequences of the highly structured alpine landscape for evolutionary processes in four study plants: Epilobium fleischeri, Geum reptans, Campanula thyrsoides and Poa alpina. The main questions were: (1) How is genetic diversity distributed within and among populations and is it affected by altitude, population size or land use? (2) Do reproductive traits such as allocation to sexual or vegetative reproduction vary with altitude or land use? Furthermore, we studied if seed weight increases with altitude. Within-population genetic diversity of the four species was high and mostly not related to altitude and population size. Nevertheless, genetic differentiation among populations was pronounced and strongly increasing with distance. In Poa alpina genetic diversity was affected by land use. Results suggest considerable genetic drift among populations of alpine plants. Reproductive allocation was affected by altitude and land use in Poa alpina and by succession in Geum reptans. Seed weight was usually higher in alpine species than in related lowland species. We conclude that the evolutionary potential to respond to global change is mostly intact in alpine plants, even at high altitude. Phenotypic variability is shaped by adaptive as well as by random evolutionary processes; moreover plastic responses to growth conditions seem to be crucial for survival of plants in the alpine landscape.
Resumo:
Natural populations inhabiting the same environment often independently evolve the same phenotype. Is this replicated evolution a result of genetic constraints imposed by patterns of genetic covariation? We looked for associations between directions of morphological divergence and the orientation of the genetic variance-covariance matrix (G) by using an experimental system of morphological evolution in two allopatric nonsister species of rainbow fish. Replicate populations of both Melanotaenia eachamensis and Melanotaenia duboulayi have independently adapted to lake versus stream hydrodynamic environments. The major axis of divergence (z) among all eight study populations was closely associated with the direction of greatest genetic variance (g(max)), suggesting directional genetic constraint on evolution. However, the direction of hydrodynamic adaptation was strongly associated with vectors of G describing relatively small proportions of the total genetic variance, and was only weakly associated with g(max). In contrast, divergence between replicate populations within each habitat was approximately proportional to the level of genetic variance, a result consistent with theoretical predictions for neutral phenotypic divergence. Divergence between the two species was also primarily along major eigenvectors of G. Our results therefore suggest that hydrodynamic adaptation in rainbow fish was not directionally constrained by the dominant eigenvector of G. Without partitioning divergence as a consequence of the adaptation of interest (here, hydrodynamic adaptation) from divergence due to other processes, empirical studies are likely to overestimate the potential for the major eigenvectors of G to directionally constrain adaptive evolution.
Resumo:
We compared within-population variability and degree of population differentiation for neutral genetic markers (RAPDS) and eight quantitative traits in Central American populations of the endangered tree, Cedrela odorata. Whilst population genetic diversity for neutral markers (Shannon index) and quantitative traits (heritability, coefficient of additive genetic variation) were uncorrelated, both marker types revealed strong differentiation between populations from the Atlantic coast of Costa Rica and the rest of the species' distribution. The degree of interpopulation differentiation was higher for RAPD markers (F-ST 0.67 for the sampled Mesoamerican range) than for quantitative traits (Q(ST) = 0.30). Hence, the divergence in quantitative traits was lower than could have been achieved by genetic drift alone, suggesting that balancing selection for similar phenotypes in different populations of this species. Nevertheless, a comparison of pair-wise estimates of population differentiation in neutral genetic markers and quantitative traits revealed a strong positive correlation (r = 0.66) suggesting that, for C. odorata, neutral marker divergence could be used as a surrogate for adaptive gene divergence for conservation planning. The utility of this finding and suggested further work are discussed.
Resumo:
Loss of genetic diversity and increased population differentiation from source populations are common problems associated with translocation programmes established from captive-bred stock or a small number of founders. The bridled nailtail wallaby is one of the most endangered macropods in Australia, having been reduced to a single remnant population in the last 100 years. A translocated population of bridled nailtail wallabies was established using animals sourced directly from the remnant population (wild-released) as well as the progeny of animals collected for a captive breeding programme (captive-bred). The aims of this study were to compare genetic diversity among released animals and their wild-born progeny to genetic diversity observed in the remnant population, and to monitor changes in genetic diversity over time as more animals were released into the population. Heterozygosity did not differ between the translocated and remnant population; however, allelic diversity was significantly reduced across all released animals and their wild-born progeny. Animals bred in captivity and their wild-born progeny were also significantly differentiated from the source population after just four generations. Wild-released animals, however, were representative of the source population and several alleles were unique to this group. Both heterozygosity and allelic diversity among translocated animals decreased over time with the additional release of captive-bred animals, as no new genetic stock was added to the population. Captive breeding programmes can provide large numbers of animals for release, but this study highlights the importance of sourcing animals directly from remnant populations in order to maintain genetic diversity and minimise genetic drift.
Resumo:
Natural populations of fish species in Lake Victoria Region (LVR) have under gone dramatic changes including severe reduction in sizes, division of original stocks into disjunct subunits, and segregation into several isolated population units either within a single water body or even worse into separate waters. In addition, these changes have been either preceded or precipitated by introductions of non-indigenous species that out competed the native forms and in case of closely related species genetically swamped them through hybridisation. The latter is especially the case in Nabugabo lakes. Such events lead to fragmentation of populations, which results in reduction in genetic diversity due to genetic drift, inbreeding and reduced or lack of gene flow among independent units. Such phenomena make the continued existence of fisheries stocks in the wild precarious, more so in the face of the competition from exotic species. Species introductions coupled with growing exploitation pressure of the fisheries of these lakes have put the native stocks at risk. Nabugabo lakes harbor cichlid species that are unique to these lakes more so species of the cichlid complex. In this paper the ecological status and genetic viability of key Nabugabo lakes fish species is examined and management options are discussed.