992 resultados para generation costs
Resumo:
Mode of access: Internet.
Using demand response to deal with unexpected low wind power generation in the context of smart grid
Resumo:
Demand response is assumed an essential resource to fully achieve the smart grids operating benefits, namely in the context of competitive markets. Some advantages of Demand Response (DR) programs and of smart grids can only be achieved through the implementation of Real Time Pricing (RTP). The integration of the expected increasing amounts of distributed energy resources, as well as new players, requires new approaches for the changing operation of power systems. The methodology proposed aims the minimization of the operation costs in a smart grid operated by a virtual power player. It is especially useful when actual and day ahead wind forecast differ significantly. When facing lower wind power generation than expected, RTP is used in order to minimize the impacts of such wind availability change. The proposed model application is here illustrated using the scenario of a special wind availability reduction day in the Portuguese power system (8th February 2012).
Resumo:
Micro-generation is the small scale production of heat and/or electricity from a low carbon source and can be a powerful driver for carbon reduction, behavior change, security of supply and economic value. The energy conversion technologies can include photovoltaic panels, micro combined heat and power, micro wind, heat pumps, solar thermal systems, fuel cells and micro hydro schemes. In this paper, a small research of the availability of the conversion apparatus and the prices for the micro wind turbines and photovoltaic systems is made and a comparison between these two technologies is performed in terms of the availability of the resource and costs. An analysis of the new legal framework published in Portugal is done to realize if the incentives to individualspsila investment in sustainable and local energy production is worth for their point of view. An economic evaluation for these alternatives, accounting with the governmentpsilas incentives should lead, in most cases, into attractive return rates for the investment. Apart from the attractiveness of the investment there are though other aspects that should be taken into account and those are the benefits that these choices have to us all. The idea is that micro-generation will not only make a significant direct contribution to carbon reduction targets, it will also trigger a multiplier effect in behavior change by engaging hearts and minds, and providing more efficient use of energy by householders. The diversified profile of power generation by micro-generators, both in terms of location and timing, should reduce the impact of intermittency or plant failures with significant gains for security of supply.
Resumo:
Most of small islands around the world today, are dependent on imported fossil fuels for the majority of their energy needs especially for transport activities and electricity production. The use of locally renewable energy resources and the implementation of energy efficiency measures could make a significant contribution to their economic development by reducing fossil fuel imports. An electrification of vehicles has been suggested as a way to both reduce pollutant emissions and increase security of supply of the transportation sector by reducing the dependence on oil products imports and facilitate the accommodation of renewable electricity generation, such as wind and, in the case of volcanic islands like Sao Miguel (Azores) of the geothermal energy whose penetration has been limited by the valley electricity consumption level. In this research, three scenarios of EV penetration were studied and it was verified that, for a 15% LD fleet replacement by EVs with 90% of all energy needs occurring during the night, the accommodation of 10 MW of new geothermal capacity becomes viable. Under this scenario, reductions of 8% in electricity costs, 14% in energy, 23% in fossil fuels use and CO2 emissions for the transportation and electricity production sectors could be expected.
Resumo:
Demand response is assumed as an essential resource to fully achieve the smart grids operating benefits, namely in the context of competitive markets and of the increasing use of renewable-based energy sources. Some advantages of Demand Response (DR) programs and of smart grids can only be achieved through the implementation of Real Time Pricing (RTP). The integration of the expected increasing amounts of distributed energy resources, as well as new players, requires new approaches for the changing operation of power systems. The methodology proposed in this paper aims the minimization of the operation costs in a distribution network operated by a virtual power player that manages the available energy resources focusing on hour ahead re-scheduling. When facing lower wind power generation than expected from day ahead forecast, demand response is used in order to minimize the impacts of such wind availability change. In this way, consumers actively participate in regulation up and spinning reserve ancillary services through demand response programs. Real time pricing is also applied. The proposed model is especially useful when actual and day ahead wind forecast differ significantly. Its application is illustrated in this paper implementing the characteristics of a real resources conditions scenario in a 33 bus distribution network with 32 consumers and 66 distributed generators.
Resumo:
The concept of demand response has drawing attention to the active participation in the economic operation of power systems, namely in the context of recent electricity markets and smart grid models and implementations. In these competitive contexts, aggregators are necessary in order to make possible the participation of small size consumers and generation units. The methodology proposed in the present paper aims to address the demand shifting between periods, considering multi-period demand response events. The focus is given to the impact in the subsequent periods. A Virtual Power Player operates the network, aggregating the available resources, and minimizing the operation costs. The illustrative case study included is based on a scenario of 218 consumers including generation sources.
Resumo:
Demand response programs and models have been developed and implemented for an improved performance of electricity markets, taking full advantage of smart grids. Studying and addressing the consumers’ flexibility and network operation scenarios makes possible to design improved demand response models and programs. The methodology proposed in the present paper aims to address the definition of demand response programs that consider the demand shifting between periods, regarding the occurrence of multi-period demand response events. The optimization model focuses on minimizing the network and resources operation costs for a Virtual Power Player. Quantum Particle Swarm Optimization has been used in order to obtain the solutions for the optimization model that is applied to a large set of operation scenarios. The implemented case study illustrates the use of the proposed methodology to support the decisions of the Virtual Power Player in what concerns the duration of each demand response event.
Resumo:
Further improvements in demand response programs implementation are needed in order to take full advantage of this resource, namely for the participation in energy and reserve market products, requiring adequate aggregation and remuneration of small size resources. The present paper focuses on SPIDER, a demand response simulation that has been improved in order to simulate demand response, including realistic power system simulation. For illustration of the simulator’s capabilities, the present paper is proposes a methodology focusing on the aggregation of consumers and generators, providing adequate tolls for the demand response program’s adoption by evolved players. The methodology proposed in the present paper focuses on a Virtual Power Player that manages and aggregates the available demand response and distributed generation resources in order to satisfy the required electrical energy demand and reserve. The aggregation of resources is addressed by the use of clustering algorithms, and operation costs for the VPP are minimized. The presented case study is based on a set of 32 consumers and 66 distributed generation units, running on 180 distinct operation scenarios.
Resumo:
Com o aumento de plataformas móveis disponíveis no mercado e com o constante incremento na sua capacidade computacional, a possibilidade de executar aplicações e em especial jogos com elevados requisitos de desempenho aumentou consideravelmente. O mercado dos videojogos tem assim um cada vez maior número de potenciais clientes. Em especial, o mercado de jogos massive multiplayer online (MMO) tem-se tornado muito atractivo para as empresas de desenvolvimento de jogos. Estes jogos suportam uma elevada quantidade de jogadores em simultâneo que podem estar a executar o jogo em diferentes plataformas e distribuídos por um "mundo" de jogo extenso. Para incentivar a exploração desse "mundo", distribuem-se de forma inteligente pontos de interesse que podem ser explorados pelo jogador. Esta abordagem leva a um esforço substancial no planeamento e construção desses mundos, gastando tempo e recursos durante a fase de desenvolvimento. Isto representa um problema para as empresas de desenvolvimento de jogos, e em alguns casos, e impraticável suportar tais custos para equipas indie. Nesta tese e apresentada uma abordagem para a criação de mundos para jogos MMO. Estudam-se vários jogos MMO que são casos de sucesso de modo a identificar propriedades comuns nos seus mundos. O objectivo e criar uma framework flexível capaz de gerar mundos com estruturas que respeitam conjuntos de regras definidas por game designers. Para que seja possível usar a abordagem aqui apresentada em v arias aplicações diferentes, foram desenvolvidos dois módulos principais. O primeiro, chamado rule-based-map-generator, contem a lógica e operações necessárias para a criação de mundos. O segundo, chamado blocker, e um wrapper à volta do módulo rule-based-map-generator que gere as comunicações entre servidor e clientes. De uma forma resumida, o objectivo geral e disponibilizar uma framework para facilitar a geração de mundos para jogos MMO, o que normalmente e um processo bastante demorado e aumenta significativamente o custo de produção, através de uma abordagem semi-automática combinando os benefícios de procedural content generation (PCG) com conteúdo gráfico gerado manualmente.
Resumo:
Taking into account the fact that the sun’s radiation is estimated to be enough to cover 10.000 times the world’s total energy needs (BRAKMANN & ARINGHOFF, 2003), it is difficult to understand how solar photovoltaic systems (PV) are still such a small part of the energy source matrix across the globe. Though there is an ongoing debate as to whether energy consumption leads to economic growth or whether it is the other way around, the two variables appear correlated and it is clear that ensuring the availability of energy to match a country’s growth targets is one of the prime concerns for any government. The topic of centralized vs distributed electricity generation is also approached, especially in what regards the latter fit to developing countries needs, namely the lack of investment capabilities and infrastructure, scattered population, and other factors. Finally, Brazil’s case is reviewed, showing that the current cost of electricity from the grid versus the cost from PV solutions still places an investment of this nature with 9 to 16 years to reach breakeven (from a 25 year panel lifespan), which is too high compared to the required 4 years for most Brazilians. Still, recently passed legislation opened the door, even if unknowingly, to the development of co-owned solar farms, which could reduce the implementation costs by as much as 20% and hence reduce the number of years to breakeven by 3 years.
Resumo:
Tese de Doutoramento - Leaders for Technical Industries (LTI) - MIT Portugal
Resumo:
Standalone levelised cost assessments of electricity supply options miss an important contribution that renewable and non-fossil fuel technologies can make to the electricity portfolio: that of reducing the variability of electricity costs, and their potentially damaging impact upon economic activity. Portfolio theory applications to the electricity generation mix have shown that renewable technologies, their costs being largely uncorrelated with non-renewable technologies, can offer such benefits. We look at the existing Scottish generation mix and examine drivers of changes out to 2020. We assess recent scenarios for the Scottish generation mix in 2020 against mean-variance efficient portfolios of electricity-generating technologies. Each of the scenarios studied implies a portfolio cost of electricity that is between 22% and 38% higher than the portfolio cost of electricity in 2007. These scenarios prove to be “inefficient” in the sense that, for example, lower variance portfolios can be obtained without increasing portfolio costs, typically by expanding the share of renewables. As part of extensive sensitivity analysis, we find that Wave and Tidal technologies can contribute to lower risk electricity portfolios, while not increasing portfolio cost.
Resumo:
Individual learning (e.g., trial-and-error) and social learning (e.g., imitation) are alternative ways of acquiring and expressing the appropriate phenotype in an environment. The optimal choice between using individual learning and/or social learning may be dictated by the life-stage or age of an organism. Of special interest is a learning schedule in which social learning precedes individual learning, because such a schedule is apparently a necessary condition for cumulative culture. Assuming two obligatory learning stages per discrete generation, we obtain the evolutionarily stable learning schedules for the three situations where the environment is constant, fluctuates between generations, or fluctuates within generations. During each learning stage, we assume that an organism may target the optimal phenotype in the current environment by individual learning, and/or the mature phenotype of the previous generation by oblique social learning. In the absence of exogenous costs to learning, the evolutionarily stable learning schedules are predicted to be either pure social learning followed by pure individual learning ("bang-bang" control) or pure individual learning at both stages ("flat" control). Moreover, we find for each situation that the evolutionarily stable learning schedule is also the one that optimizes the learned phenotype at equilibrium.