990 resultados para generalized confluent hypergeometric function


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Summation ueber des vollstaendige Spektrum des Atoms, die in der Stoehrungstheorie zweiter Ordnung vorkommt, wurde mit Hilfe der Greenschen Funktion Methode berechnet. Die Methode der Greenschen Funktion verlangt die Berechnung der unterschiedlichen Greenschen Funktionen: eine Coulomb-Greensche-Funktion im Fall von wasserstoffaehnlichen Ionen und eine Zentral-feld-Greensche-Funktion im Fall des Vielelektronen-Atoms. Die entwickelte Greensche Funktion erlaubte uns die folgenden atomaren Systeme in die Zweiphotonenionisierung der folgenden atomaren Systeme zu untersuchen: - wasserstoffaehnliche Ionen, um relativistische und Multipol-Effekte aufzudecken, - die aeussere Schale des Lithium; Helium und Helium-aehnliches Neon im Grundzustand, um taugliche Modelle des atomaren Feldes zu erhalten, - K- und L-Schalen des Argon, um die Vielelektronen-Effekte abzuschaetzen. Zusammenfassend, die relativistische Effekte ergeben sich in einer allgemeinen Reduzierung der Zweiphotonen Wirkungsquerschnitte. Zum Beispiel, betraegt das Verhaeltnis zwischen den nichtrelativistischen und relativistischen Wirkungsquerschnitten einen Faktor zwei fuer wasserstoffaehnliches Uran. Ausser dieser relativistischen Kontraktion, ist auch die relativistische Aufspaltung der Zwischenzustaende fuer mittelschwere Ionen sichtbar. Im Gegensatz zu den relativistischen Effekten, beeinflussen die Multipol-Effekte die totalen Wirkungsquerschnitte sehr wenig, so dass die Langwellennaeherung mit der exakten Naeherung fuer schwere Ionen sogar innerhalb von 5 Prozent uebereinstimmt. Die winkelaufgeloesten Wirkungsquerschnitte werden durch die relativistischen Effekte auf eine beeindruckende Weise beeinflusst: die Form der differentiellen Wirkungsquerschnitte aendert sich (qualitativ) abhaengig von der Photonenenergie. Ausserdem kann die Beruecksichtigung der hoeheren Multipole die elektronische Ausbeute um einen Faktor drei aendern. Die Vielelektronen-Effekte in der Zweiphotonenionisierung wurden am Beispiel der K- und L-Schalen des Argon analysiert. Hiermit wurden die totalen Wirkungsquerschnitte in einer Ein-aktives-Elektron-Naeherung (single-active-electron approximation) berechnet. Es hat sich herausgestellt, dass die Elektron--Elektron-Wechselwirkung sehr wichtig fuer die L-Schale und vernachlaessigbar fuer die K-Schale ist. Das bedeutet, dass man die totalen Wirkungsquerschnitte mit wasserstoffaehnlichen Modellen im Fall der K-Schale beschreiben kann, aber fuer die L-Schale fortgeschrittene Modelle erforderlich sind. Die Ergebnisse fuer Vielelektronen-Atome wurden mittels einer Dirac-Zentral-feld-Greenschen Funktion erlangt. Ein numerischer Algorithmus wurde urspruenglich von McGuire (1981) fuer der Schroedinger-Zentral-feld-Greensche Funktion eingefuehrt. Der Algorithmus wurde in dieser Arbeit zum ersten Mal fuer die Dirac-Gleichung angewandt. Unser Algorithmus benutzt die Kummer- und Tricomi-Funktionen, die mit Hilfe eines zuverlaessigen, aber noch immer langsamen Programmes berechnet wurden. Die Langsamkeit des Programms begrenzt den Bereich der Aufgaben, die effizient geloest werden koennen. Die Zentral-feld-Greensche Funktion konnte bei den folgenden Problemen benutzt werden: - Berechnung der Zweiphotonen-Zerfallsraten, - Berechnung der Zweiphotonenanregung und -ionisierungs-Wirkungsquerschnitte, - Berechnung die Multiphotonenanregung und -ionisierungs-Wirkungsquerschnitte, - Berechnung einer atomaren Vielelektronen-Green-Funktion. Von diesen Aufgaben koennen nur die ersten beiden in angemessener Zeit geloest werden. Fuer die letzten beiden Aufgaben ist unsere Implementierung zu langsam und muss weiter verbessert werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major UK initiative, entitled 'Mapping the Underworld', is seeking to address the serious social, environmental and economic consequences arising from an inability to locate the buried utility service infrastructure without resorting to extensive excavations. Mapping the Underworld aims to develop and prove the efficacy of a multi-sensor device for accurate remote buried utility service detection, location and, where possible, identification. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics, and the application of this technology for detecting buried infrastructure is currently being investigated. Here, a shear wave ground vibration technique for detecting buried pipes is described. For this technique, shear waves are generated at the ground surface, and the resulting ground surface vibrations measured, using geophones, along a line traversing the anticipated run of the pipe. Measurements were made at a test site with a single pressurized polyethylene mains water pipe. Time-extended signals were employed to generate the illuminating wave. Cross-correlation functions between the measured ground velocities and a reference measurement adjacent to the excitation were then calculated and summed using a stacking method to generate a cross-sectional image of the ground. The wide cross-correlation peaks caused by high ground attenuation were partially compensated for by using a generalized cross-correlation function called the smoothed coherence transform. To mitigate the effects of other potential sources of vibration in the vicinity, the excitation signal was used as an additional reference when calculating the generalized cross-correlation functions. For two out of three tests, the pipe was detected, indicating that this technique will be a valuable addition to the Mapping the Underworld armoury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First order characterizations of pseudoconvex functions are investigated in terms of generalized directional derivatives. A connection with the invexity is analysed. Well-known first order characterizations of the solution sets of pseudolinear programs are generalized to the case of pseudoconvex programs. The concepts of pseudoconvexity and invexity do not depend on a single definition of the generalized directional derivative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 33C60, 44A15

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt"

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

: Because the acinar cells of the exocrine pancreas in patients with Shwachman-Diamond syndrome (SDS) are severely depleted, we hypothesized that a similar deficiency may be present in acinar cells of the parotid gland.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Numerous authors have proposed functions to quantify the degree of similarity between two fuzzy numbers using various descriptive parameters, such as the geometric distance, the distance between the centers of gravity or the perimeter. However, these similarity functions have drawback for specific situations. We propose a new similarity measure for generalized trapezoidal fuzzy numbers aimed at overcoming such drawbacks. This new measure accounts for the distance between the centers of gravity and the geometric distance but also incorporates a new term based on the shared area between the fuzzy numbers. The proposed measure is compared against other measures in the literature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is controversy regarding the use of the similarity functions proposed in the literature to compare generalized trapezoidal fuzzy numbers since conflicting similarity values are sometimes output for the same pair of fuzzy numbers. In this paper we propose a similarity function aimed at establishing a consensus. It accounts for the different approaches of all the similarity functions. It also has better properties and can easily incorporate new parameters for future improvements. The analysis is carried out on the basis of a large and representative set of pairs of trapezoidal fuzzy numbers.