986 resultados para generalized assignment problem
Resumo:
The problem of assigning cells to switches in a cellular mobile network is an NP-hard optimization problem. So, real size mobile networks could not be solved by using exact methods. The alternative is the use of the heuristic methods, because they allow us to find a good quality solution in a quite satisfactory computational time. This paper proposes a Beam Search method to solve the problem of assignment cell in cellular mobile networks. Some modifications in this algorithm are also presented, which allows its parallel application. Computational results obtained from several tests confirm the effectiveness of this approach to provide good solutions for medium- and large-sized cellular mobile network.
Resumo:
In the present paper, we study the quasiequilibrium problem and generalized quasiequilibrium problem of generalized quasi-variational inequality in H-spaces by a new method. Some new equilibrium existence theorems are given. Our results are different from corresponding given results or contain some recent results as their special cases. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
It is generally challenging to determine end-to-end delays of applications for maximizing the aggregate system utility subject to timing constraints. Many practical approaches suggest the use of intermediate deadline of tasks in order to control and upper-bound their end-to-end delays. This paper proposes a unified framework for different time-sensitive, global optimization problems, and solves them in a distributed manner using Lagrangian duality. The framework uses global viewpoints to assign intermediate deadlines, taking resource contention among tasks into consideration. For soft real-time tasks, the proposed framework effectively addresses the deadline assignment problem while maximizing the aggregate quality of service. For hard real-time tasks, we show that existing heuristic solutions to the deadline assignment problem can be incorporated into the proposed framework, enriching their mathematical interpretation.
Resumo:
A multiple-partners assignment game with heterogeneous sales and multiunit demands consists of a set of sellers that own a given number of indivisible units of (potentially many different) goods and a set of buyers who value those units and want to buy at most an exogenously fixed number of units. We define a competitive equilibrium for this generalized assignment game and prove its existence by using only linear programming. In particular, we show how to compute equilibrium price vectors from the solutions of the dual linear program associated to the primal linear program defined to find optimal assignments. Using only linear programming tools, we also show (i) that the set of competitive equilibria (pairs of price vectors and assignments) has a Cartesian product structure: each equilibrium price vector is part of a competitive equilibrium with all optimal assignments, and vice versa; (ii) that the set of (restricted) equilibrium price vectors has a natural lattice structure; and (iii) how this structure is translated into the set of agents' utilities that are attainable at equilibrium.
Resumo:
WDM (Wavelength-Division Multiplexing) optiset verkot on tällä hetkellä suosituin tapa isojen määrän tietojen siirtämiseen. Jokaiselle liittymälle määrätään reitin ja aallonpituus joka linkin varten. Tarvittavan reitin ja aallon pituuden löytäminen kutsutaan RWA-ongelmaksi. Tämän työn kuvaa mahdollisia kustannuksen mallein ratkaisuja RWA-ongelmaan. Olemassa on paljon erilaisia optimoinnin tavoitteita. Edellä mainittuja kustannuksen malleja perustuu näillä tavoitteilla. Kustannuksen malleja antavat tehokkaita ratkaisuja ja algoritmeja. The multicommodity malli on käsitelty tässä työssä perusteena RV/A-kustannuksen mallille. Myöskin OB käsitelty heuristisia menetelmiä RWA-ongelman ratkaisuun. Työn loppuosassa käsitellään toteutuksia muutamalle mallille ja erilaisia mahdollisuuksia kustannuksen mallein parantamiseen.
Resumo:
Thèse réalisée en cotutelle avec l'Université d'Avignon.
Resumo:
The solution of the pole assignment problem by feedback in singular systems is parameterized and conditions are given which guarantee the regularity and maximal degree of the closed loop pencil. A robustness measure is defined, and numerical procedures are described for selecting the free parameters in the feedback to give optimal robustness.
Resumo:
We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a particularly efficient application of the method for which we can prove that corrections vanish asymptotically as exp(-(E(N+1) - E(n))t). The gap E(N+1) - E(n) can be made large by increasing the number N of interpolating fields in the correlation matrix. We also show how excited state matrix elements can be extracted such that contaminations from all other states disappear exponentially in time. As a demonstration we present numerical results for the extraction of ground state and excited B-meson masses and decay constants in static approximation and to order 1/m(b) in HQET.
Resumo:
Quadratic assignment problems (QAPs) are commonly solved by heuristic methods, where the optimum is sought iteratively. Heuristics are known to provide good solutions but the quality of the solutions, i.e., the confidence interval of the solution is unknown. This paper uses statistical optimum estimation techniques (SOETs) to assess the quality of Genetic algorithm solutions for QAPs. We examine the functioning of different SOETs regarding biasness, coverage rate and length of interval, and then we compare the SOET lower bound with deterministic ones. The commonly used deterministic bounds are confined to only a few algorithms. We show that, the Jackknife estimators have better performance than Weibull estimators, and when the number of heuristic solutions is as large as 100, higher order JK-estimators perform better than lower order ones. Compared with the deterministic bounds, the SOET lower bound performs significantly better than most deterministic lower bounds and is comparable with the best deterministic ones.
Resumo:
A comparative study of aggregation error bounds for the generalized transportation problem is presented. A priori and a posteriori error bounds were derived and a computational study was performed to (a) test the correlation between the a priori, the a posteriori, and the actual error and (b) quantify the difference of the error bounds from the actual error. Based on the results we conclude that calculating the a priori error bound can be considered as a useful strategy to select the appropriate aggregation level. The a posteriori error bound provides a good quantitative measure of the actual error.
Resumo:
This paper tackles a Nurse Scheduling Problem which consists of generating work schedules for a set of nurses while considering their shift preferences and other requirements. The objective is to maximize the satisfaction of nurses' preferences and minimize the violation of soft constraints. This paper presents a new deterministic heuristic algorithm, called MAPA (multi-assignment problem-based algorithm), which is based on successive resolutions of the assignment problem. The algorithm has two phases: a constructive phase and an improvement phase. The constructive phase builds a full schedule by solving successive assignment problems, one for each day in the planning period. The improvement phase uses a couple of procedures that re-solve assignment problems to produce a better schedule. Given the deterministic nature of this algorithm, the same schedule is obtained each time that the algorithm is applied to the same problem instance. The performance of MAPA is benchmarked against published results for almost 250,000 instances from the NSPLib dataset. In most cases, particularly on large instances of the problem, the results produced by MAPA are better when compared to best-known solutions from the literature. The experiments reported here also show that the MAPA algorithm finds more feasible solutions compared with other algorithms in the literature, which suggest that this proposed approach is effective and robust. © 2013 Springer Science+Business Media New York.
Resumo:
This thesis deals with an investigation of Decomposition and Reformulation to solve Integer Linear Programming Problems. This method is often a very successful approach computationally, producing high-quality solutions for well-structured combinatorial optimization problems like vehicle routing, cutting stock, p-median and generalized assignment . However, until now the method has always been tailored to the specific problem under investigation. The principal innovation of this thesis is to develop a new framework able to apply this concept to a generic MIP problem. The new approach is thus capable of auto-decomposition and autoreformulation of the input problem applicable as a resolving black box algorithm and works as a complement and alternative to the normal resolving techniques. The idea of Decomposing and Reformulating (usually called in literature Dantzig and Wolfe Decomposition DWD) is, given a MIP, to convexify one (or more) subset(s) of constraints (slaves) and working on the partially convexified polyhedron(s) obtained. For a given MIP several decompositions can be defined depending from what sets of constraints we want to convexify. In this thesis we mainly reformulate MIPs using two sets of variables: the original variables and the extended variables (representing the exponential extreme points). The master constraints consist of the original constraints not included in any slaves plus the convexity constraint(s) and the linking constraints(ensuring that each original variable can be viewed as linear combination of extreme points of the slaves). The solution procedure consists of iteratively solving the reformulated MIP (master) and checking (pricing) if a variable of reduced costs exists, and in which case adding it to the master and solving it again (columns generation), or otherwise stopping the procedure. The advantage of using DWD is that the reformulated relaxation gives bounds stronger than the original LP relaxation, in addition it can be incorporated in a Branch and bound scheme (Branch and Price) in order to solve the problem to optimality. If the computational time for the pricing problem is reasonable this leads in practice to a stronger speed up in the solution time, specially when the convex hull of the slaves is easy to compute, usually because of its special structure.
Resumo:
Learning by reinforcement is important in shaping animal behavior, and in particular in behavioral decision making. Such decision making is likely to involve the integration of many synaptic events in space and time. However, using a single reinforcement signal to modulate synaptic plasticity, as suggested in classical reinforcement learning algorithms, a twofold problem arises. Different synapses will have contributed differently to the behavioral decision, and even for one and the same synapse, releases at different times may have had different effects. Here we present a plasticity rule which solves this spatio-temporal credit assignment problem in a population of spiking neurons. The learning rule is spike-time dependent and maximizes the expected reward by following its stochastic gradient. Synaptic plasticity is modulated not only by the reward, but also by a population feedback signal. While this additional signal solves the spatial component of the problem, the temporal one is solved by means of synaptic eligibility traces. In contrast to temporal difference (TD) based approaches to reinforcement learning, our rule is explicit with regard to the assumed biophysical mechanisms. Neurotransmitter concentrations determine plasticity and learning occurs fully online. Further, it works even if the task to be learned is non-Markovian, i.e. when reinforcement is not determined by the current state of the system but may also depend on past events. The performance of the model is assessed by studying three non-Markovian tasks. In the first task, the reward is delayed beyond the last action with non-related stimuli and actions appearing in between. The second task involves an action sequence which is itself extended in time and reward is only delivered at the last action, as it is the case in any type of board-game. The third task is the inspection game that has been studied in neuroeconomics, where an inspector tries to prevent a worker from shirking. Applying our algorithm to this game yields a learning behavior which is consistent with behavioral data from humans and monkeys, revealing themselves properties of a mixed Nash equilibrium. The examples show that our neuronal implementation of reward based learning copes with delayed and stochastic reward delivery, and also with the learning of mixed strategies in two-opponent games.
Resumo:
Learning by reinforcement is important in shaping animal behavior. But behavioral decision making is likely to involve the integration of many synaptic events in space and time. So in using a single reinforcement signal to modulate synaptic plasticity a twofold problem arises. Different synapses will have contributed differently to the behavioral decision and, even for one and the same synapse, releases at different times may have had different effects. Here we present a plasticity rule which solves this spatio-temporal credit assignment problem in a population of spiking neurons. The learning rule is spike time dependent and maximizes the expected reward by following its stochastic gradient. Synaptic plasticity is modulated not only by the reward but by a population feedback signal as well. While this additional signal solves the spatial component of the problem, the temporal one is solved by means of synaptic eligibility traces. In contrast to temporal difference based approaches to reinforcement learning, our rule is explicit with regard to the assumed biophysical mechanisms. Neurotransmitter concentrations determine plasticity and learning occurs fully online. Further, it works even if the task to be learned is non-Markovian, i.e. when reinforcement is not determined by the current state of the system but may also depend on past events. The performance of the model is assessed by studying three non-Markovian tasks. In the first task the reward is delayed beyond the last action with non-related stimuli and actions appearing in between. The second one involves an action sequence which is itself extended in time and reward is only delivered at the last action, as is the case in any type of board-game. The third is the inspection game that has been studied in neuroeconomics. It only has a mixed Nash equilibrium and exemplifies that the model also copes with stochastic reward delivery and the learning of mixed strategies.
Resumo:
We present a model for plasticity induction in reinforcement learning which is based on a cascade of synaptic memory traces. In the cascade of these so called eligibility traces presynaptic input is first corre lated with postsynaptic events, next with the behavioral decisions and finally with the external reinforcement. A population of leaky integrate and fire neurons endowed with this plasticity scheme is studied by simulation on different tasks. For operant co nditioning with delayed reinforcement, learning succeeds even when the delay is so large that the delivered reward reflects the appropriateness, not of the immediately preceeding response, but of a decision made earlier on in the stimulus - decision sequence . So the proposed model does not rely on the temporal contiguity between decision and pertinent reward and thus provides a viable means of addressing the temporal credit assignment problem. In the same task, learning speeds up with increasing population si ze, showing that the plasticity cascade simultaneously addresses the spatial problem of assigning credit to the different population neurons. Simulations on other task such as sequential decision making serve to highlight the robustness of the proposed sch eme and, further, contrast its performance to that of temporal difference based approaches to reinforcement learning.