950 resultados para gain of function mutation
Resumo:
Antifungal resistance of Candida species is a clinical problem in the management of diseases caused by these pathogens. In this study we identified from a collection of 423 clinical samples taken from Tunisian hospitals two clinical Candida species (Candida albicans JEY355 and Candida tropicalis JEY162) with decreased susceptibility to azoles and polyenes. For JEY355, the fluconazole (FLC) MIC was 8 μg/ml. Azole resistance in C. albicans JEY355 was mainly caused by overexpression of a multidrug efflux pump of the major facilitator superfamily, Mdr1. The regulator of Mdr1, MRR1, contained a yet-unknown gain-of-function mutation (V877F) causing MDR1 overexpression. The C. tropicalis JEY162 isolate demonstrated cross-resistance between FLC (MIC > 128 μg/ml), voriconazole (MIC > 16 μg/ml), and amphotericin B (MIC > 32 μg/ml). Sterol analysis using gas chromatography-mass spectrometry revealed that ergosterol was undetectable in JEY162 and that it accumulated 14α-methyl fecosterol, thus indicating a perturbation in the function of at least two main ergosterol biosynthesis proteins (Erg11 and Erg3). Sequence analyses of C. tropicalis ERG11 (CtERG11) and CtERG3 from JEY162 revealed a deletion of 132 nucleotides and a single amino acid substitution (S258F), respectively. These two alleles were demonstrated to be nonfunctional and thus are consistent with previous studies showing that ERG11 mutants can only survive in combination with other ERG3 mutations. CtERG3 and CtERG11 wild-type alleles were replaced by the defective genes in a wild-type C. tropicalis strain, resulting in a drug resistance phenotype identical to that of JEY162. This genetic evidence demonstrated that CtERG3 and CtERG11 mutations participated in drug resistance. During reconstitution of the drug resistance in C. tropicalis, a strain was obtained harboring only defective Cterg11 allele and containing as a major sterol the toxic metabolite 14α-methyl-ergosta-8,24(28)-dien-3α,6β-diol, suggesting that ERG3 was still functional. This strain therefore challenged the current belief that ERG11 mutations cannot be viable unless accompanied by compensatory mutations. In conclusion, this study, in addition to identifying a novel MRR1 mutation in C. albicans, constitutes the first report on a clinical C. tropicalis with defective activity of sterol 14α-demethylase and sterol Δ(5,6)-desaturase leading to azole-polyene cross-resistance.
Resumo:
Principal mechanisms of resistance to azole antifungals include the upregulation of multidrug transporters and the modification of the target enzyme, a cytochrome P450 (Erg11) involved in the 14alpha-demethylation of ergosterol. These mechanisms are often combined in azole-resistant Candida albicans isolates recovered from patients. However, the precise contributions of individual mechanisms to C. albicans resistance to specific azoles have been difficult to establish because of the technical difficulties in the genetic manipulation of this diploid species. Recent advances have made genetic manipulations easier, and we therefore undertook the genetic dissection of resistance mechanisms in an azole-resistant clinical isolate. This isolate (DSY296) upregulates the multidrug transporter genes CDR1 and CDR2 and has acquired a G464S substitution in both ERG11 alleles. In DSY296, inactivation of TAC1, a transcription factor containing a gain-of-function mutation, followed by sequential replacement of ERG11 mutant alleles with wild-type alleles, restored azole susceptibility to the levels measured for a parent azole-susceptible isolate (DSY294). These sequential genetic manipulations not only demonstrated that these two resistance mechanisms were those responsible for the development of resistance in DSY296 but also indicated that the quantitative level of resistance as measured in vitro by MIC determinations was a function of the number of genetic resistance mechanisms operating in any strain. The engineered strains were also tested for their responses to fluconazole treatment in a novel 3-day model of invasive C. albicans infection of mice. Fifty percent effective doses (ED(50)s) of fluconazole were highest for DSY296 and decreased proportionally with the sequential removal of each resistance mechanism. However, while the fold differences in ED(50) were proportional to the fold differences in MICs, their magnitude was lower than that measured in vitro and depended on the specific resistance mechanism operating.
Resumo:
Our previous investigation on Candida glabrata azole-resistant isolates identified two isolates with unaltered expression of CgCDR1/CgCDR2, but with upregulation of another ATP-binding cassette transporter, CgSNQ2, which is a gene highly similar to ScSNQ2 from Saccharomyces cerevisiae. One of the two isolates (BPY55) was used here to elucidate this phenomenon. Disruption of CgSNQ2 in BPY55 decreased azole resistance, whereas reintroduction of the gene in a CgSNQ2 deletion mutant fully reversed this effect. Expression of CgSNQ2 in a S. cerevisiae strain lacking PDR5 mediated not only resistance to azoles but also to 4-nitroquinoline N-oxide, which is a ScSNQ2-specific substrate. A putative gain-of-function mutation, P822L, was identified in CgPDR1 from BPY55. Disruption of CgPDR1 in BPY55 conferred enhanced azole susceptibility and eliminated CgSNQ2 expression, whereas introduction of the mutated allele in a susceptible strain where CgPDR1 had been disrupted conferred azole resistance and CgSNQ2 upregulation, indicating that CgSNQ2 was controlled by CgPDR1. Finally, CgSNQ2 was shown to be involved in the in vivo response to fluconazole. Together, our data first demonstrate that CgSNQ2 contributes to the development of CgPDR1-dependent azole resistance in C. glabrata. The overlapping in function and regulation between CgSNQ2 and ScSNQ2 further highlight the relationship between S. cerevisiae and C. glabrata.
Resumo:
Objectives: Patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, APS-I) suffer from chronic candidosis caused mainly by Candida albicans, and repeated courses of azole antifungals have led to the development of resistance in the APECED patient population in Finland. The aim of our study was to address whether the patients are persistently colonized with the same or genetically closely related strains, whether epidemic strains are present and which molecular mechanisms account for azole resistance. Methods: Sets of C. albicans (n?=?19) isolates from nine APECED patients reported with decreased susceptibility to fluconazole isolated up to 9 years apart were included. The strains were typed by multilocus sequence typing. CDR1/2, MDR1 and ERG11 mRNA expression was analysed by northern blotting and Cdr1, Cdr2 and Mdr1 protein expression by western blotting, and TAC1 and ERG11 genes were sequenced. Results: All seven patients with multiple C. albicans isolates analysed were persistently colonized with the same or a genetically closely related strain for a mean of 5 years. All patients were colonized with different strains and no epidemic strains were found. The major molecular mechanisms behind the azole resistance were mutations in TAC1 contributing to overexpression of CDR1 and CDR2. Six new TAC1 mutations were found, one of which (N740S) is likely to be a gain-of-function mutation. Most isolates were found to have gained multiple TAC1 and ERG11 point mutations. Conclusions: Despite clinically successful treatment leading to relief of symptoms, colonization by C. albicans strains is persistent within APECED patients. Microevolution and point mutations occur within strains, leading to the development of azole-resistant isolates.
Resumo:
Interleukin-2 (IL-2) is a major T cell growth factor and plays an essential role in the development of normal immune responses. The Janus kinases (Jaks) and Signal transducers and activators of transcription (Stats) are critical for transducing signals from the IL-2 receptors (IL2Rs) to the nucleus to control cell growth and differentiation. In recent years there has been increasing evidence to indicate that the IL-2 activated Jak3/Stat5 pathway provides a new molecular target for immune suppression. Thus, understanding the regulation of this effector cascade has important therapeutic potential.^ One objective of this work was to identify and define the role and molecular mechanism of novel phosphorylation sites in Jak3. Using functional proteomics, three novel Jak3 phosphorylation sites, Y904, Y939 and S574 were identified. Phosphospecific antibodies confirmed that phosphorylation of Y904 and Y939 were mediated by IL-2 and other IL-2 family cytokines in distinct cell types. Biochemical analysis demonstrated that phosphorylation of both Y904 and Y939 positively regulated Jak3 enzymatic activity, while phosphorylation of S574 did not affect Jak3 in vitro kinase activity. However, a gain-of-function mutation of S574 in Jak3 abrogated IL-2 mediated Stat5 activation, suggesting that phosphorylation of this residue might serve a negative role to attenuate IL-2 signaling. Furthermore, mechanistic analysis suggested that phosphorylation of Y904 in Jak3 affects the KmATP of Jak3, while phosphorylation of Y939 in Jak3 was required to bind one of its substrates, Stat5.^ The second objective was to determine the role of serine/threonine phosphatases in the regulation of the IL2R complex. Activation of Jak3 and Stat5 by IL-2 is a transient event mediated by phosphorylation. Using a specific PP1/PP2A inhibitor, we observed that inhibition of PP1/PP2A negatively regulated the IL-2 activated Jak3/Stat5 signaling pathway in a human NK cell line (YT) and primary human T cells. More importantly, coimmunoprecipitation assays indicated that inhibition of PP1/PP2A blocked the formation of an active IL2R complex. Pretreatment of cells with the inhibitor also reduced the electrophoretic mobility of the IL2Rβ and IL2Rγ subunits in YT cells, suggesting that inhibition of PP1/PP2A directly or indirectly regulates undefined serine/threonine kinases which phosphorylate these proteins. Based on these observations, a model has emerged that serine/threonine phosphorylation of the IL2Rβ and IL2Rγ subunits causes a conformational change of these proteins, which disrupts IL2R dimerization and association of Jak3 and Stat5 to these receptors.^
Resumo:
The ends of eukaryotic chromosomes are protected by specialized ribonucleoprotein structures termed telomeres. Telomeres protect chromosomes from end-to-end fusions, inappropriate repair and degradation. Disruption of this complex activates an ATM/ATR DNA damage response (DDR) pathway. One component of the complex is the Protection Of Telomeres 1 (POT1) protein, an evolutionarily conserved protein which binds single-stranded 3' overhang and is required for both chromosomal end protection and telomere length regulation. The mouse contains two POT1 orthologs, Pot1a and Pot1b. Here we show that both proteins colocalize with telomeres through interaction with the adapter protein TPP1. In addition, compared to Pot1a, the OB-folds of Pot1b possess less sequence specificity for telomeres. Disruption of POT1 proteins result in telomere dysfunction and activation of an ATR-dependent DDR at telomeres, suggesting that this response is normally suppressed by POT1 binding to the single-stranded G-overhang. ^ Telomeres are maintained by telomerase, and its absence in somatic cells results in telomere progressive loss that triggers the activation of p53. Telomere dysfunction initiates genomic instability and induces both p53-dependent replicative senescence and apoptosis to suppress tumorigenesis. In the absence of functional p53, this genomic instability promotes cancer. It was previously not known which aspect of the p53 dependent DNA damage response is important to suppress tumorigenesis initiated by dysfunctional telomeres. The p53R172P knock-in mouse, which is unable to induce apoptosis but retains intact cell cycle arrest/cellular senescence pathways, allowed us to examine whether p53-dependent apoptosis is a major tumor suppression pathway initiated in the setting of telomere dysfunction. Spontaneous tumorigenesis remains potently suppressed in late generation telomerase null mice possessing the p53P/P mutation. These results suggest that suppression of spontaneous tumorigenesis initiated by dysfunctional telomeres requires activation of a p53-dependent senescence pathway. In addition, we used another knock-in mouse model with a p53R172H (p53H) point mutation to test the hypothesis that telomere dysfunction promotes chromosomal instability and accelerates the onset of tumorigenesis in vivo in the setting of this most common gain-of-function mutation in the human Li Fraumeni cancer syndrome. We unexpectedly observed that telomerase null mice possessing dysfunctional telomeres in the setting of the p53H/+ mutation develop significantly fewer tumors, die prematurely and exhibit higher level of cellular senescence, apoptosis and elevated genomic instability compared to telomerase intact p53H/+ and telomerase null p53+/+ mice. These contrasting results thus link cancer and aging to the functional status of telomeres and the integrity of the p53 pathway. ^
Resumo:
Gastrointestinal stromal tumors (GIST) are mesenchymal neoplasms frequently caused by a gain of function mutation in KIT or PDGFRα, two tyrosine kinase receptors (TKR). For this reason, they are successfully treated with imatinib, a tyrosine kinase inhibitor (TKI). However, the therapy is typically long-term ineffective due to imatinib resistance, which represents the main issue in the clinic of GISTs. Although numerous efforts have been made in the last two decades to develop novel therapies for imatinib-resistant GISTs, the approvals of multi-target TKIs have only improved the clinical outcomes modestly. Emblematic is the recent failure of ripretinib in the phase III INTRIGUE trial, decisively marking the end of the paradigm only based on the central role of KIT secondary mutations in imatinib resistance, and the consequent seeking of multi-target TKIs as the solution. Consistent with this clinical result, preclinical studies have revealed numerous mechanisms of resistance that are not targetable with multi-target TKIs, indicating that imatinib resistance is more multifaceted than initially hypothesized and explaining the modest efficacy of these latter. In this scenario, the absence of drugs capable of long-term counteracting the rise of imatinib-resistant subclones unavoidably leads to progressive disease and metastasis. In particular, the onset of metastases remarkably impacts the median overall survival and determines the most GIST-related deaths. Therefore, new therapy proposals are needed. Here, we present two project lines investigating novel strategies to counteract imatinib-resistant GISTs.
Resumo:
Extracellular copper regulates the DNA binding activity of the CopY repressor of Enterococcus hirae and thereby controls expression of the copper homeostatic genes encoded by the cop operon. CopY has a CxCxxxxCxC metal binding motif. CopZ, a copper chaperone belonging to a family of metallochaperones characterized by a MxCxxC metal binding motif, transfers copper to CopY. The copper binding stoichiometries of CopZ and CopY were determined by in vitro metal reconstitutions. The stoichiometries were found to be one copper(l) per CopZ and two copper(l) per CopY monomer. X-ray absorption studies suggested a mixture of two- and three-coordinate copper in Cu(1)CopZ, but a purely three-coordinate copper coordination with a Cu-Cu interaction for Cu(1)(2)CopY. The latter coordination is consistent with the formation of a compact binuclear Cu(l)-thiolate core in the CxCxxxxCxC binding motif of CopY. Displacement of zinc, by copper. from CopY was monitored with 2,4-pyridylazoresorcinol. Two copper(l) ions were required to release the single zinc(II) ion bound per CopY monomer. The specificity of copper transfer between CopZ and CopY was dependent on electrostatic interactions. Relative copper binding affinities of the proteins were investigated using the chelator, diethyldithiocarbamic acid (DDC). These data suggest that CopY has a higher affinity for copper than CopZ. However, this affinity difference is not the sole factor in the copper exchange: a charge-based interaction between the two proteins is required for the transfer reaction to proceed. Gain-of-function mutation of a CopZ homologue demonstrated the necessity of four lysine residues on the chaperone for the interaction with CopY. Taken together, these results suggest a mechanism for copper exchange between CopZ and CopY.
Resumo:
Le récepteur de la vasopressine de type 2 (V2R) joue un rôle crucial dans l’homéostasie hydrique. Exprimé principalement au niveau du rein, son activation par l’hormone antidiurétique arginine-vasopressine (AVP) favorise la réabsorption d’eau, participant ainsi à diminuer la diurèse. Plus de 200 mutations dans le gène du V2R ont été associées au diabète néphrogénique insipide congénital (DINc), une maladie causée par une perte de fonction du récepteur. À l’opposé, trois mutations découvertes récemment induisent un gain de fonction du V2R, et sont la cause du syndrome néphrogénique de l’anti-diurèse inappropriée (NSIAD). Les travaux de cette thèse visent à mieux comprendre les bases moléculaires responsables de la perte ou du gain de fonction des récepteurs mutants associés à ces deux maladies. Dans plus de 50% des cas, les mutations faux-sens affectent négativement l’adoption d’une conformation native par le V2R, provoquant la reconnaissance et la rétention intracellulaire des mutants par le système de contrôle de qualité du réticulum endoplasmique. Nos résultats ont démontré que l’interaction entre les récepteurs mutants et le chaperon moléculaire calnexine est dépendante de N-glycosylation et que sa durée varie en fonction de la mutation. De plus, l’importance de cette modification co-traductionnelle et des interactions lectines-sucres dans le processus de maturation d’un mutant donné s’est avérée une caractéristique intrinsèque, puisque l’absence de N-glycosylation n’a pas affecté le mutant Y128S (phénotype léger) tandis que la maturation du mutant W164S (phénotype sévère) a été totalement abolie. Nos résultats suggèrent aussi que l’action des chaperons pharmacologiques (CP), molécules favorisant la maturation des mutants du V2R, peut survenir à différentes étapes au cours du processus de maturation, selon le mutant réchappé. Ces différences entre muta nts suggèrent des processus biosynthétiques ‘personnalisés’ dictés par la nature de la mutation impliquée et pourraient expliquer la différence de sévérité des manifestations cliniques chez les patients porteurs de ces mutations. Bien qu’une récupération de fonction ait été obtenue pour les mutants Y128S et W164S par un traitement au CP, il n’en est pas de même pour toutes les mutations occasionnant un défaut conformationnel. C’est ce que nous avons démontré pour le mutant V88M, affligé de deux défauts, soit une faible efficacité de maturation combinée à une basse affinité pour l’AVP. Dans ce cas, et malgré une augmentation du nombre de récepteurs mutants la surface cellulaire, la diminution de l’affinité apparente du récepteur mutant pour l’AVP a été exacerbée par la présence résiduelle de CP à son site de liaison, rendant impossible l’activation du récepteur aux concentrations physiologiques d’AVP. Les mutants R137C et R137L ont une activité constitutive élevée et mènent au NSIAD tandis que la substitution de cette même arginine par une histidine (R137H) mène au DINc. Ces trois mutants se sont avéré partager plusieurs caractéristiques, dont une efficacité de maturation réduite et une désensibilisation spontanée élevée. La seule différence iden tifiée entre ces mutants est leur niveau d’activité constitutive. Le CP utilisé dans nos études possède aussi la propriété d’agoniste inverse, mais n’a pourtant pas diminué l’activité constitutive des mutants R137C/L, suggérant une conformation active ‘figée’. Seul l’effet chaperon a été observé, entraînant la hausse de récepteurs à la surface cellulaire, qui se traduit par une augmentation de la production de second messager. Nous avons par contre suggéré l’utilisation d’AVP puisqu’il favorise l’endocytose des récepteurs R137/L sans promouvoir leur activation, diminuant ainsi le nombre de récepteurs actifs à la surface cellulaire. Nous avons identifié la première mutation occasionnant un gain de fonction du V2R qui n’implique pas l’arginine 137. Le mutant F229V a une activité constitutive élevée et, contrairement aux R137C et R137L, il n’est pas sujet à une désensibilisation spontanée accrue. L’observation que des agonistes inverses sont aptes à inhiber l’activité constitutive de ce nouveau mutant est une découverte importante puisque l’insuccès obtenu avec les mutations précédentes suggérait que ces molécules n’étaient pas utiles pour le traitement du NSIAD. Considérés globalement, ces travaux illustrent le caractère particulier des formes mutantes du V2R et l’importance de bien cerner les conséquences fonctionnelles des mutations afin d’apporter aux patients atteints de DINc ou NSIAD une thérapie personnalisée, et de développer de nouveaux agents thérapeutiques adaptés aux besoins.
Resumo:
Type 1 von Willebrand disease (VWD), characterized by reduced levels of plasma von Willebrand factor (VWF), is the most common inherited bleeding disorder in humans. Penetrance of VWD is incomplete, and expression of the bleeding phenotype is highly variable. In addition, plasma VWF levels vary widely among normal individuals. To identify genes that influence VWF level, we analyzed a genetic cross between RIIIS/J and CASA/Rk, two strains of mice that exhibit a 20-fold difference in plasma VWF level. DNA samples from F2 progeny demonstrating either extremely high or extremely low plasma VWF levels were pooled and genotyped for 41 markers spanning the autosomal genome. A novel locus accounting for 63% of the total variance in VWF level was mapped to distal mouse chromosome 11, which is distinct from the murine Vwf locus on chromosome 6. We designated this locus Mvwf for “modifier of VWF.” Additional genotyping of as many as 2407 meioses established a high resolution genetic map with gene order Cola1-Itg3a-Ngfr-Mvwf/Gip-Hoxb9-Hoxb1-Cbx·rs2-Cox5a-Gfap. The Mvwf candidate interval between Ngfr and Hoxb9 is ≈0.5 centimorgan (cM). These results demonstrate that a single dominant gene accounts for the low VWF phenotype of RIIIS/J mice in crosses with several other strains. The pattern of inheritance suggests a gain-of-function mutation in a unique component of VWF biosynthesis or processing. Characterization of the human homologue for Mvwf may have relevance for a subset of type 1 VWD cases and may define an important genetic factor modifying penetrance and expression of mutations at the VWF locus.
Resumo:
Irregular facets (If) is a dominant mutation of Drosophila that results in small eyes with fused ommatidia. Previous results showed that the gene Krüppel (Kr), which is best known for its early segmentation function, is expressed ectopically in If mutant eye discs. However, it was not known whether ectopic Kr activity is either the cause or the result of the If mutation. Here, we show that If is a gain-of-function allele of Kr. We then used the If mutation in a genetic screen to identify dominant enhancers and suppressors of Kr activity on the third chromosome. Of 30 identified Kr-interacting loci, two were cloned, and we examined whether they also represent components of a natural Kr-dependent developmental pathway of the embryo. We show that the two genes, eyelid (eld) and extramacrochaetae (emc), which encode a Bright family-type DNA binding protein and a helix-loop-helix factor, respectively, are necessary to achieve the singling-out of a unique Kr-expressing cell during the development of the Malpighian tubules, the excretory organs of the fly. The results indicate that the Kr gain-of-function mutation If provides a tool to identify genes that are active during eye development and that a number of them function also in the control of Kr-dependent developmental processes.
Resumo:
Neonatal diabetes is a rare monogenic form of diabetes that usually presents within the first six months of life. It is commonly caused by gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of the plasmalemmal ATP-sensitive K(+) (K(ATP)) channel. To better understand this disease, we generated a mouse expressing a Kir6.2 mutation (V59M) that causes neonatal diabetes in humans and we used Cre-lox technology to express the mutation specifically in pancreatic beta cells. These beta-V59M mice developed severe diabetes soon after birth, and by 5 weeks of age, blood glucose levels were markedly increased and insulin was undetectable. Islets isolated from beta-V59M mice secreted substantially less insulin and showed a smaller increase in intracellular calcium in response to glucose. This was due to a reduced sensitivity of K(ATP) channels in pancreatic beta cells to inhibition by ATP or glucose. In contrast, the sulfonylurea tolbutamide, a specific blocker of K(ATP) channels, closed K(ATP) channels, elevated intracellular calcium levels, and stimulated insulin release in beta-V59M beta cells, indicating that events downstream of K(ATP) channel closure remained intact. Expression of the V59M Kir6.2 mutation in pancreatic beta cells alone is thus sufficient to recapitulate the neonatal diabetes observed in humans. beta-V59M islets also displayed a reduced percentage of beta cells, abnormal morphology, lower insulin content, and decreased expression of Kir6.2, SUR1, and insulin mRNA. All these changes are expected to contribute to the diabetes of beta-V59M mice. Their cause requires further investigation.
Resumo:
BACKGROUND: Mutations in SCN4A may lead to myotonia. METHODS: Presentation of a large family with myotonia, including molecular studies and patch clamp experiments using human embryonic kidney 293 cells expressing wild-type and mutated channels. RESULTS: In a large family with historic data on seven generations and a clear phenotype, including myotonia at movement onset, with worsening by cold temperature, pregnancy, mental stress, and especially after rest after intense physical activity, but without weakness, the phenotype was linked with the muscle sodium channel gene (SCN4A) locus, in which a novel p.I141V mutation was found. This modification is located within the first transmembrane segment of domain I of the Na(v)1.4 alpha subunit, a region where no mutation has been reported so far. Patch clamp experiments revealed a mutation-induced hyperpolarizing shift (-12.9 mV) of the voltage dependence of activation, leading to a significant increase (approximately twofold) of the window current amplitude. In addition, the mutation shifted the voltage dependence of slow inactivation by -8.7 mV and accelerated the entry to this state. CONCLUSIONS: We propose that the gain-of-function alteration in activation leads to the observed myotonic phenotype, whereas the enhanced slow inactivation may prevent depolarization-induced paralysis.
Resumo:
Background: Familial Hemiplegic Migraine (FHM), characterized by a prolonged unilateral hemiparesis, mainly results from mutations in the alpha-1a subunit of the calcium channel gene CACNA1A that can also cause two other dominantly inherited neurological disorders, Episodic Ataxia type 2 (EA2, with sometimes migrainous headaches) and Spinocerebellar Ataxia type 6 (SCA6, late-onset and progressive). A same mutation can have different clinical expression in a family (hemiplegic migraine, migraine-coma, cerebellar ataxia). CACNA1A mutations in FHM are usually missense, leading to gain-of-function, while truncating mutations leading to loss-of-function are usually associated with EA2. Case report: This 9-year-old girl was seen as a baby for hypotonia and transient vertical nystagmus. Her first brain MRI was normal. She evolved as a congenital ataxia, but since the age of two, she had attacks of coma, hemiparesis (either side), partial seizures, dystonic movements and fever. Attacks were initially triggered by minor head bumps, subsequently spontaneous. Brain MRIs in the acute stage always showed transient unilateral hemisphere swelling. Follow-up images revealed atrophic lesions in the temporo-occipital regions and cerebellar atrophy. A prophylactic trial with flunarizine was ineffective. Acetazolamide was recently introduced. Methods: Since our patient shared features of both FHM and EA2, we studied the CACNA1A gene by direct sequencing in the patient's and parents' DNA. Results: We identified an unreported de novo heterozygous deletion of three base pairs (c.4503_4505delCTT) predicting the deletion of one amino acid (p.Phe1502del). The CACNA1A protein contains 4 domains, each formed by six transmembrane segments. The deletion is located in a highly conserved region in segment 6 (S6) of the third domain. Mutations in S6 segments of calcium channels change single-channel conductance and channel selectivity, most resulting in loss-of-function. Outlook: In vitro expression studies of the identified mutation are underway, aiming at understanding its functional consequences and finding an efficient treatment.
Resumo:
There is a high incidence of pituitary-dependent hyperadrenocorticism (PDH) in Poodle dogs, with family members being affected by the disease, suggesting a genetic involvement. Tpit is an obligate transcription factor for the expression of pro-opiomelanocortingene and for corticotroph terminal differentiation. The aim of the present study was to screen the Tpit gene for germline mutations in Poodles with PDH. Fifty Poodle dogs (33 female, 8.71 +/- 2.8 years) with PDH and 50 healthy Poodle dogs (32 females, 9.4241 2.8 years) were studied. Genomic DNA was isolated from peripheral blood, amplified by PCR and submitted to automatic sequence. No mutation in the coding region of Tpit was found, whereas the new single nucleotide polymorphism p.S343G, in heterozygous state, was found in the same frequency in both PDH and control groups. We concluded that Tpit gain-of-function mutations are not involved in the etiology of PDH in Poodle dogs.