997 resultados para fungus culture


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mode of action of xylanase and beta-glucosidase purified from the culture filtrate of Humicola lanuginosa (Griffon and Maublanc) Bunce on the xylan extracted from sugarcane bagasse and on two commercially available larchwood and oat spelt xylans, on xylooligomers and on arabinoxylooligomers was studied. While larchwood and oat spelt xylans were hydrolyzed to the same extent in 24 h, sugarcane bagasse xylan was hydrolyzed to a lesser extent in the same period. It was found that the rate of hydrolysis of xylooligomers by xylanase increased with increase in chain length, while beta-glucosidase acted rather slowly on all the oligomers tested. Xylanase exhibited predominant ''endo'' action on xylooligomers attacking the xylan chain at random while beta-glucosidase had ''exo'' action, releasing one xylose residue at a time. On arabinoxylooligomers, however, xylanase exhibited ''exo'' action. Thus, it appears that the presence of the arabinose substituent has, in some way, rendered the terminal xylose-xylose linkage more susceptible to xylanase action. It was also observed that even after extensive hydrolysis with both the enzymes, substantial amounts of the parent arabinoxylooligomer remained unhydrolyzed together with the accumulation of arabinoxylobiose. It can therefore be concluded that the presence of the arabinose substituent in the xylan chain results in linkages that offer resistance to both xylanase and beta-glucosidase action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composting is the biological conversion of solid organic waste into usable end products such as fertilizers, substrates for mushroom production and biogas. Although composts are highly variable in their bulk composition, composting material is generally based on lignocellulose compounds derived from agricultural, forestry, fruit and vegetable processing, household and municipal wastes. Lignocellulose is very recalcitrant; however it is rich and abundant source of carbon and energy. Therefore lignocellulose degradation is essential for maintaining the global carbon cycle. In compost, the active component involved in the biodegradation and conversion processes is the resident microbial population, among which microfungi play a very important role. In composting pile the warm, humid, and aerobic environment provides the optimal conditions for their development. Microfungi use many carbon sources, including lignocellulosic polymers and can survive in extreme conditions. Typically microfungi are responsible for compost maturation. In order to improve the composting process, more information is needed about the microbial degradation process. Better knowledge on the lignocellulose degradation by microfungi could be used to optimize the composting process. Thus, this thesis focused on lignocellulose and humic compounds degradation by a microfungus Paecilomyces inflatus, which belongs to a flora of common microbial compost, soil and decaying plant remains. It is a very common species in Europe, North America and Asia. The lignocellulose and humic compounds degradation was studied using several methods including measurements of carbon release from 14C-labelled compounds, such as synthetic lignin (dehydrogenative polymer, DHP) and humic acids, as well as by determination of fibre composition using chemical detergents and sulphuric acid. Spectrophotometric enzyme assays were conducted to detect extracellular lignocellulose-degrading hydrolytic and oxidative enzymes. Paecilomyces inflatus secreted clearly extracellular laccase to the culture media. Laccase was involved in the degradation process of lignin and humic acids. In compost P. inflatus mineralised 6-10% of 14C-labelled DHP into carbon dioxide. About 15% of labelled DHP was converted into water-soluble compounds. Also humic acids were partly mineralised and converted into water-soluble material, such as low-molecular mass fulvic acid-like compounds. Although laccase activity in aromatics-rich compost media clearly is connected with the degradation process of lignin and lignin-like compounds, it may preferentially effect the polymerisation and/or detoxification of such aromatic compounds. P. inflatus can degrade lignin and carbohydrates also while growing in straw and in wood. The cellulolytic enzyme system includes endoglucanase and β-glucosidase. In P. inflatus the secretion of these enzymes was stimulated by low-molecular-weight aromatics, such as soil humic acid and veratric acid. When strains of P. inflatus from different ecophysiological origins were compared, indications were found that specific adaptation strategies needed for lignocellulosics degradation may operate in P. inflatus. The degradative features of these microfungi are on relevance for lignocellulose decomposition in nature, especially in soil and compost environments, where basidiomycetes are not established. The results of this study may help to understand, control and better design the process of plant polymer conversion in compost environment, with a special emphasis on the role of ubiquitous microfungi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ten species of Holothrips, including seven new species, are recognized from Australia, with one further new species from New Caledonia. A new genus, Holoengythrips, is described from Australia, with nine new species that look similar to Holothrips species in having elongate maxillary stylets that are close together medially for the full length of the head. In contrast to species of Holothrips, the species of Holoengythrips are strongly sexually dimorphic, with antennal segment VIII separated from VII and the maxillary stylets more slender, and the males have a pore plate on the eighth sternite. Holoengythrips is therefore considered to be more closely related to Hoplandrothrips.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five new species of Sophiothrips are described from mainland Australia, of which one is widespread in the eastern part of the continent, with a second widespread across the northern tropical zone. These species appear to be members of the breviceps species-group from the Old World tropics. One of these five is particularly unusual within the genus in that the maxillary stylets are retracted into the head anterior to the postoccipital ridge. A sixth new species is described from Australia that is known only from Norfolk Island, but this is closely related to two species that are endemic to New Zealand. A key is provided to the nine species recognised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucoamylase (1,4-alpha-D-glucan glucohydrolase, EC 3.2.1.3) was purified from the culture filtrates of the thermophilic fungus Thermomyces lanuginosus and was established to be homogeneous by a number of criteria. The enzyme was a glycoprotein with an average molecular weight of about 57 000 and a carbohydrate content of 10-12%. The enzyme hydrolysed successive glucose residues from the non-reducing ends of the starch molecule. It did not exhibit any glucosyltransferase activity. The enzyme appeared to hydrolyse maltotriose by the multi-chain mechanism. The enzyme was unable to hydrolyse 1,6-alpha-D-glucosidic linkages of isomaltose and dextran. It was optimally active at 70 degrees C. The enzyme exhibited increase in the Vmax. and decreased in Km values with increasing chain length of the substrate molecule. The enzyme was inhibited by the substrate analogue D-glucono-delta-lactone in a non-competitive manner. The enzyme inhibited remarkable resistance towards chemical and thermal denaturation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An alpha-D-glucuronidase was purified from the culture filtrates of Thermoascus aurantiacus. A simple colorimetric method for its assay is reported. The enzyme is a single polypeptide chain with a molecular weight of 118,000. It acts optimally at pH 4.5. It shows maximum activity at 65 degrees C. The t 1/2 at 70 degrees C was 40 min. It specifically cleaved the alpha-(1----2) linkage between 4-O-methyl-alpha-D-glucuronic acid and the xylose residue in xylan and several glucurono-xylooligosaccharides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extracellular β-glucosidase (EC 3.2.1.21) has been purified to homogeneity from the culture filtrate of a thermophilic fungus, Humicola lanuginosa (Griffon and Maublanc) Bunce, using duplicating paper as the carbon source. The enzyme was purified 82-fold with a 43% yield by ion-exchange chromatography and gel filtration. The molecular weight of the protein was estimated to be 135,000 by gel filtration and 110,000 by electrophoresis. The sedimentation coefficient was 10.5 S. It was an acidic protein containing high amounts of acidic amino acid residues. It was poor in sulphur-containing amino acids. It also contained 9% carbohydrate. The enzyme activity was optimum at pH 4.5 and at 60°C. The enzyme was stable in the pH range 6–9 for 24 h at 25°C. The enzyme had similar affinities towards cellobiose and p-nitrophenyl-β-d-glucoside with Km values of 0.44 mM and 0.50 mM, respectively. The enzyme was capable of hydrolysing larchwood xylan, xylobiose and p-nitrophenyl-β-d-xyloside, though to a lesser extent. The enzyme was specific for the β-configuration and glucose moiety in the substrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extracellular xylanase was purified to homogeneity from the culture filtrate of the thermophilic fungus, Humicola lanuginosa (Griffon and Maublanc) Bunce and its properties were studied. A fourfold purification and a yield of 8% were achieved. The molecular-weight of the protein was found to be 22,500 based on electrophoretic mobility and 29,000 by gel filtration behavior. The protein is rich in acidic amino acids, glycine and tyrosine, and poor in sulfur-containing amino acids. The kinetic properties of the enzyme are similar to those of other fungal xylanases. The enzyme shows high affinity toward larchwood xylan (Km = 0.91 mg/ml) and hydrolyzes only xylan. The enzyme becomes inactivated when stored for more than 2 months at −20 °C in the dry state. Such an inactivation has not been reported so far for any xylanase. Using chromatographic techniques, one species of protein differing from the native protein in charge but enzymatically active was isolated in low yields. However, a large molecular-weight species of the protein devoid of enzyme activity was isolated in substantial quantities and further characterized. Based on ultracentrifugation and gel electrophoretic studies, it was concluded that this species may be an aggregate of the native protein and that such an aggregation might be taking place on storage in the dry state at −20 °C, leading to loss in activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple forms of beta-glucosidase (EC 3.2.1.21) of Sporotrichum thermophile were produced when the fungus was grown in a cellulose medium. One beta-glucosidase was purified 16-fold from 6-d-old culture filtrates by ion-exchange and gel-filtration chromatography. The purified enzyme was free of cellulase activity. It hydrolysed aryl beta-D-glucosides and beta-D-linked diglucosides. It was optimally active at pH 5.4, at 65-degrees-C. The apparent K(m) values for p-nitrophenyl beta-D-glucoside (PNPG) and cellobiose were 0.29 and 0.83 mm, respectively. Glucose, fucose, nojirimycin and gluconolactone inhibited beta-glucosidase competitively. At high (> 1 mm) substrate concentration, beta-glucosidase catalysed a parallel transglycosylation reaction. The transglycosylation product formed from cellobiose appeared to be a beta-linked tetramer of glucose. Admixtures of beta-glucosidase and cellulase components showed that the concept of cellobiose inhibition of cellulases was not valid for all components of the cellulase system of S. thermophile. Beta-Glucosidase supplementation also stimulated cellulose hydrolysis by cellulases when there was no accumulation of cellobiose in reaction mixture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a medium containing cellulose as the carbon source, the rapid growth of Sporotrichum thermophile, the secretion of cellulases and the utilization of cellulose were well-correlated events. The production of beta-glucosidase in culture medium lagged behind cellulases, coinciding with the time of extensive autolysis of mycelia. By contrast, neither apparent autolysis nor secretion of beta-glucosidase occurred when S. thermophile was grown in medium containing cellobiose; the enzyme activity remained associated with mycelia. The release of beta-glucosidase in cellulose-grown cultures was correlated with the activity of the lytic enzyme in the cell wall. Immunocytochemical localization and biochemical characterization showed that a beta-glucosidase released in the cellulose medium was the same as that which remained associated with mycelia grown on cellobiose. The results indicated that the release of beta-glucosidase in the cellulose culture is incidental to the activity of the lytic enzymes which are strongly induced by cellulose. The observations minimize a functional role of the culture fluid beta-glucosidase in cellulolysis by the fungus. Rather, the available information suggests that the cellulases and beta-glucosidases associated with the hyphal cell wall may play a role in cellulolysis by the fungus. (C) 1994 Academic Press, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

n a medium containing cellulose as the carbon source, the rapid growth of Sporotrichum thermophile, the secretion of cellulases and the utilization of cellulose were well-correlated events. The production of beta-glucosidase in culture medium lagged behind cellulases, coinciding with the time of extensive autolysis of mycelia. By contrast, neither apparent autolysis nor secretion of beta-glucosidase occurred when S. thermophile was grown in medium containing cellobiose; the enzyme activity remained associated with mycelia. The release of beta-glucosidase in cellulose-grown cultures was correlated with the activity of the lytic enzyme in the cell wall. Immunocytochemical localization and biochemical characterization showed that a beta-glucosidase released in the cellulose medium was the same as that which remained associated with mycelia grown on cellobiose. The results indicated that the release of beta-glucosidase in the cellulose culture is incidental to the activity of the lytic enzymes which are strongly induced by cellulose. The observations minimize a functional role of the culture fluid beta-glucosidase in cellulolysis by the fungus. Rather, the available information suggests that the cellulases and beta-glucosidases associated with the hyphal cell wall may play a role in cellulolysis by the fungus. (C) 1994 Academic Press, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fungal infection of P. monodon larvae is a problem in hatchery operations. The fungus, which attacks the nauplius to postlarval stages and causes up to 100% mortality, has been tentatively identified as belonging to the genus Lagenidium . This pathogenic organism has recently been isolated and cultured. A description is given of the fungus, and features of its biology and pathology are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ergosterimide (1), a natural Diels-Alder adduct of ergosteroid and maleimide, was characterized from the culture extract of Aspergillus niger EN-13, an endophytic fungus isolated from the marine brown alga Colpomenia sinuosa. In addition, four known steroids including (22E,24R)-ergosta-5,7,22-trien-3 beta-ol (2), (22E,24R)-ergosta-4,6,8(14),22-tetraen-3one (3), (22E,24R)-5 alpha,8 alpha-epidioxyergosta-6,22-dien-3 beta-ol (4), and (22E,24R)-ergosta-7,22dien-3 beta,5 alpha,6 beta-triol. (5) were also isolated and identified. The structures of these compounds were elucidated by extensive analysis of 1D and 2D NMR and IR spectra and MS data. The plausible biosynthetic pathway of 1 was also discussed. To the best of our knowledge, 1 is the first natural Diels-Alder adduct of steroid and maleimide reported so far. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asperamides A (1) and B (2), a sphingolipid and their corresponding glycosphingolipid possessing a hitherto unreported 9-methyl-C-20-sphingosine moiety, were characterized from the culture extract of Aspergillus niger EN-13, an endophytic fungus isolated from marine brown alga Colpomenia sinuosa. The structures were elucidated by spectroscopic and chemical methods as (2S,2'R,3R,3'E,4E,8E)-N-(2'-hydroxy-3'-hexadecenoyl)-9-methyl-4,8-icosadien-1,3-diol (1) and 1-O-beta-D-glucopyranosyl-(2S,2'R,3R,3'E,4E,8E)-N-(2'-hydroxy-3'-hexadecenoyl)-9-methyl-4,8-icosadien-1,3-diol (2). In the antifungal assay, asperamide A (1) displayed moderate activity against Candida albicans.